• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Frage der Stoffwechselsteigerung bei chronischer Nicotin'Zufuhr

Querengässer, Oda, January 1962 (has links)
Inaug.-Diss.--Marburg. / Vita. Includes bibliographical references.
2

Palmoplantar pustulosis : pathogenetic studies with special reference to the role of nicotine /

Hagforsen, Eva, January 1900 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2001. / Härtill 5 uppsatser.
3

Identification and Characterization of Novel CYP2A6 Variants in African American Slow Nicotine Metabolizers

Piliguian, Mark 19 March 2014 (has links)
Nicotine, the main addictive compound in tobacco, is metabolically inactivated to cotinine primarily by the hepatic enzyme CYP2A6. Substantial genetic variation in the CYP2A6 gene contributes to large variation in nicotine metabolism which alters numerous smoking behaviours. The goal of this study was to identify and characterize novel CYP2A6 variants. The CYP2A6 gene from African American phenotypically slow nicotine metabolizers was sequenced. Seven novel non-synonymous variants were identified: 468G>A (V68M), 1767C>G (I149M), 3515G>A (R265Q), 3524T>C (I268T), 4406C>T (T303I), 5661G>A (E390K), 6531T>C (L462P). They were introduced into a cDNA expression construct where they displayed lower protein expression, reduced nicotine metabolism to cotinine, and/or reduced stability as evaluated by western blotting and enzymatic activity. Genotyping assays were developed and assessed in 512 African Americans. Allelic frequencies ranged from 0.1-0.6% with a collective genotype frequency of 3.2%. Here we identified novel variants with reduced/loss of CYP2A6 activity, increasing our understanding of CYP2A6 variability.
4

Identification and Characterization of Novel CYP2A6 Variants in African American Slow Nicotine Metabolizers

Piliguian, Mark 19 March 2014 (has links)
Nicotine, the main addictive compound in tobacco, is metabolically inactivated to cotinine primarily by the hepatic enzyme CYP2A6. Substantial genetic variation in the CYP2A6 gene contributes to large variation in nicotine metabolism which alters numerous smoking behaviours. The goal of this study was to identify and characterize novel CYP2A6 variants. The CYP2A6 gene from African American phenotypically slow nicotine metabolizers was sequenced. Seven novel non-synonymous variants were identified: 468G>A (V68M), 1767C>G (I149M), 3515G>A (R265Q), 3524T>C (I268T), 4406C>T (T303I), 5661G>A (E390K), 6531T>C (L462P). They were introduced into a cDNA expression construct where they displayed lower protein expression, reduced nicotine metabolism to cotinine, and/or reduced stability as evaluated by western blotting and enzymatic activity. Genotyping assays were developed and assessed in 512 African Americans. Allelic frequencies ranged from 0.1-0.6% with a collective genotype frequency of 3.2%. Here we identified novel variants with reduced/loss of CYP2A6 activity, increasing our understanding of CYP2A6 variability.

Page generated in 0.074 seconds