Return to search

Fonctions du long ARN non-codant MALAT1 dans la réponse à l'hypoxie

Le gène metastasis-associated lung adenocarcinoma transcript 1, ou MALAT1 code pour un long ARN non codant (lncRNA) dont la maturation aboutit à la formation de Malat1 nucléaire et d'un petit ARN non codant cytoplasmique, le MASCRNA. Même si les fonctions physiologiques de Malat1 et du MASCRNA restent largement inconnues, les niveaux de Malat1 sont, depuis sa découverte, associés aux processus tumoraux. En effet, il a été rapporté par de nombreuses études que les niveaux des transcrits de MALAT1 étaient augmentés dans tous les types de cancers et associés à un mauvais pronostic pour les patients. Or, la prolifération tumorale et la dissémination des métastases surviennent dans un milieu notamment hypoxique. Dans ce contexte, l'hypothèse générale de la présente thèse était que l'expression de Malat1 est modulée par l'hypoxie, et que la réponse tissulaire à l'hypoxie est altérée lorsque cette modulation est bloquée ou absente. En premier lieu, la voie de signalisation régissant l'expression de MALAT1 pendant l'hypoxie a été caractérisée par la technique de gène rapporteur. Dans des essais cellulaires, la modulation de la transcription de MALAT1 a été augmentée par l'hypoxie, et contrôlée par le facteur induit par l'hypoxie HIF-1α, lui-même activé par une cascade signalétique impliquant l'AMPK. Nous avons ensuite évalué l'importance de Malat1 dans la réponse à l'hypoxie, avec un focus particulier sur deux tissus dont les fonctions sont très sensibles à l'oxygène, soit le poumon, où Malat1 est fortement exprimé de façon constitutive, et le tissu adipeux brun, dont l'activité thermogénique dépend de l'oxygénation. Dans ces deux tissus, l'exposition de souris à l'hypoxie (10% O₂) a aussi augmenté les niveaux de Malat1. L'absence de Malat1 par invalidation génétique a protégé les poumons de l'hyperréactivité induite par l'hypoxie en augmentant le volume alvéolaire et l'extraction de l'oxygène. De plus, une corrélation négative entre les niveaux d'expression du MASCRNA et le déclin des fonctions respiratoires de patients atteints de maladie pulmonaire obstructive chronique (MPOC) a été observée, suggérant que la transcription accrue de MALAT1 est délétère pour la physiologie pulmonaire. Dans le tissu adipeux brun, autant l'hypoxie que l'absence de Malat1 ont favorisé le ralentissement de l'activité de la chaine respiratoire mitochondriale, suggérant que Malat1 stimule la thermogenèse. Par essais de gène rapporteur, nous avons démontré que Malat1 inhibe la dégradation de la région 3'UTR de Prdm16, un coactivateur transcriptionel essentiel à la réponse thermogénique du tissu adipeux brun. Ce mécanisme de stabilisation a augmenté les niveaux protéiques de Prdm16, et pourrait ainsi contribuer aux effets positifs de Malat1 sur le tissu adipeux brun. En conclusion, en s'appuyant sur les mécanismes déjà décrits dans la littérature, cette thèse démontre que l'hypoxie augmente les niveaux de Malat1, et établit des liens de causalités entre les phénotypes observés en absence de Malat1 et les fonctions potentielles de ce lncRNA dans la réponse tissulaire aux niveaux d'oxygène de l'organisme, notamment sur la physiologie pulmonaire ainsi que le métabolisme du tissu adipeux brun. Ce travail ouvre la voie à de nombreux travaux qui permettront d'affiner nos observations, mais également de mettre en lumière de nouvelles cibles thérapeutiques dans le contexte de la MPOC. / Metastasis-associated lung adenocarcinoma transcript 1, MALAT1, is a conserved, long non-coding RNA (lncRNA) whose processing results in the formation of mature nuclear MALAT1 and small cytoplasmic MASCRNA. Although the physiological functions of MALAT1 and MASCRNA are unknown, MALAT1 has been associated with tumor development. Indeed, numerous studies reported that the levels of MALAT1 are increased in all types of cancers and associated with poor prognosis. Both tumor proliferation and metastasis involve hypoxic milieu and signaling. In this context, the main hypothesis of the present thesis was that hypoxia increases MALAT1 transcription, and that cellular and tissular responses to hypoxia are altered in the absence of Malat1. Using a gene reporter technique, we first found that MALAT1 expression was increased by hypoxia through the activation of the transcription factor hypoxia-inducible factor HIF-1α by AMPK signaling. We next evaluated in mice the contribution of Malat1 in the response to hypoxia, with special attention to two tissues notable sensibility to oxygen status, namely the lung, which constitutively expresses high levels of Malat1, and brown adipose tissue, a thermogenic organ driven by uncoupled respiration. In mice exposed to hypoxia (10% O₂), Malat1 expression was increased in both tissues. Genetic ablation of Malat1 protected mice against hypoxia-induced lung hyperresponsiveness through increased alveolar volume and enhanced oxygen extraction. In addition, a robust correlation between MASCRNA levels and the decline of lung function in patients with chronic obstructive pulmonary disease (COPD) was observed, suggesting that increased MALAT1 transcription is deleterious to lung physiology. In brown adipose tissue, Malat1 deficiency by itself resulted in hypometabolism, an effect similarly observed after exposure to hypoxia, suggesting a central role for Malat1 in mitochondrial activity. Using a gene reporter assay, we further found that Malat1 inhibited the degradation of the 3'UTR region of Prdm16, a transcriptional coactivator essential to the thermogenic program of brown adipose tissue. This stabilizing mechanism stimulated Prdm16 protein levels, which could have contributed to positive effects of Malat1 on this tissue in mice. In conclusion, hypoxia increased Malat1 expression and its absence in two tissues altered their adaptive responses to low oxygen levels. Thus, the work presented in this thesis highlighted causal links between the phenotypes observed in the absence of Malat1 and the potential functions of this lncRNA in tissue responses to hypoxia, notably on lung physiology and brown adipose tissue metabolism. Finally, although more mechanistic and translational studies are required to build upon our observations, our findings suggest new potential therapeutic targets against CODP.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/103924
Date30 November 2022
CreatorsSallé, Sandrine
ContributorsPicard, Frédéric
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxii, 117 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds