Return to search

Transition-metal-free reduction of carbon dioxide

Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Seulement neuf années se sont écoulées depuis la découverte que les ‘’Paires de Lewis Frustrées’’ (PLF) peuvent promouvoir le clivage de l’hydrogène, mais plus d’un millier d’articles scientifiques ont déjà été publiés sur le sujet. Au début des travaux décrits dans cette thèse, les catalyseurs pour la réduction du CO2 étaient excessivement rares et peu efficaces. La présente thèse porte donc sur le développement de nouveaux systèmes sans métal de transition pour la réduction catalytique du CO2 en molécules riches en énergie et plus précisément, en méthanol. D’abord, la préparation d’un nouveau système basé sur les PLF et sa capacité à activer le CO2 de façon réversible est présenté. En présence de catécholborane, le CO2 est catalytiquement réduit en méthoxyboranes, espèces facilement hydrolysables en méthanol. Surprenamment, un produit de décomposition est identifié comme étant responsable de l’activité catalytique. En effet, l’espèce ambiphile 1-Bcat-2-PPh2-C6H4 constitue le premier exemple d’un catalyseur sans métal de transition pour l’hydroboration du CO2. L’activité de ce catalyseur excessivement simple surpasse celle des meilleurs systèmes basés sur des métaux. Des études mécanistiques détaillées révèlent que l’activation simultanée du borane et du CO2 est d’une importance critique. Une investigation poussée révèle que la formation d’un adduit entre le catalyseur et le formaldéhyde résulte en un organocatalyseur d’autant plus actif. Il est aussi démontré que les phosphazènes, super bases organiques, sont des organocatalyseurs très actifs pour la transformation du CO2 en dérivés de formate ou de méthanol. De façon intéressante, le DMF (N, N-diméthylformamide) peut promouvoir l’hydrosilylation réductive du CO2 en absence de catalyseur. Une nouvelle stratégie d’hydrogénation a été développée en étudiant les aspects fondamentaux de l’hydrogénation par les PLFs, permettant ainsi la conception d’un système pour l’hydrogénation du CO2 en conditions ambiantes. Même si une voie de décomposition inattendue rend le processus stoéchiométrique, une optimisation du catalyseur pourrait générer le premier catalyseur sans métal pour l’hydrogénation du CO2. / Only nine years have passed since the seminal discovery that Frustrated Lewis Pairs (FLPs) could split dihydrogen and yet, more than a thousand research papers have already been published on the subject. As the work presented herein commenced, metal-free systems capable of catalytically transforming CO2 could be counted on a single hand while transition-metal based systems were almost as scarce. As such, the present thesis deals with the development of novel transition-metal-free systems for the catalytic reduction of CO2 to energy rich materials, most notably methanol. Firstly, the preparation of a new FLP system bearing three pendant phosphine groups Al(C6H4(o-PPh2))3 and its ability to activate carbon dioxide in a reversible fashion are presented. In the presence of catecholborane, CO2 is catalytically reduced to methoxyboranes, species which are readily hydrolyzed to methanol. Interestingly, a decomposition product is shown to be responsible for the catalytic activity Indeed, species 1-Bcat-2-PPh2-C6H4 is the first report of a catalyst for the metal-free hydroboration of carbon dioxide. The activity of this excessively simple catalyst surpasses that of the best transition metal systems while using the cheap and high hydrogen content borane BH3.SMe2. In-depth mechanistic studies reveals that simultaneous activation of both the borane and CO2 molecules is of critical importance. Further investigation reveals that the formation of an adduct between the catalyst and formaldehyde affords an even more potent organocatalyst. It is also shown that phosphazene superbases are very active organocatalysts for the transformation of CO2 to either formate or methanol derivatives. Unexpectedly, N, N-dimethylformamide (DMF) can promote the reductive hydrosilylation of CO2 in the absence of any catalyst. Finally, the challenging task of developing a metal-free system for the hydrogenation of CO2 was undertaken. A novel strategy was developed by studying the fundamental aspects of FLP mediated hydrogenations, allowing us to achieve CO2 reduction under ambient conditions. While an unexpected decomposition pathway hampered catalysis, optimisation of the catalyst design is expected to yield the first metal-free catalyst for the hydrogenation of CO2.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/26219
Date23 April 2018
CreatorsCourtemanche, Marc-André
ContributorsFontaine, Frédéric-Georges
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typethèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxx, 228 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0027 seconds