Return to search

The Study of Organic Solar Cell Doped with Metallic Nanoparticle

Polymers are with low carrier mobility. If polymer solar cells are to exhibit high power conversion efficiencies, their carrier mobilities must be improved. Metallic NPs are promising materials for use in polymer solar cells because of their high conductivities.
In this work, we studied the carrier transport characteristic of metallic nanoparticle blending into polymers. We blended Pt nanoparticles (Pt NPs) and Pd nanoparticles (Pd NPs) into polymers to improve carrier mobility, and enhance the power conversion efficiency of the polymer solar cell. P3HT was used as a donor material because of its high stability and with high absorption in visible light. PCBM was used as a acceptor material because of its high stability and with high electron transportation.
We blended modified Pt NPs and Pd NPs into the P3HT:PCBM active layer, with the device configurations of ITO/PEDOT:PSS/P3HT:PCBM:
Pt NPs/Al and ITO/PEDOT:PSS/P3HT:PCBM:Pd NPs/Al, respectively polymer solar cells measured was under AM 1.5G 100mW/cm2 illumination. When we blended Pt NPs into the active layer, the open-circuit remained 0.64V, the short-circuit current increased from 6.67mA/cm2 to 9mA/cm2, the power conversion efficiency increased from 1.96% to 3.08%. When we blended Pd NPs into the active layer, the open-circuit remained 0.62V, the short-circuit current increased from 6.33mA/cm2 to 7.33mA/cm2, the power conversion efficiency increased from 1.7% to 2.48%.
The enhanced efficiency originated from the increased carrier mobility of the active layer when the Pt NPs or Pd NPs were present.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0721108-163532
Date21 July 2008
CreatorsTsai, Ying-Chen
ContributorsPing-Tsung Huang, Wen-Yao Huang, Yu-Kai Han, Chih-Chien Lee, Jui-Ming Yeh, Mei-Ying Chang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0721108-163532
Rightscampus_withheld, Copyright information available at source archive

Page generated in 0.0021 seconds