• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Organic Solar Cell Doped with Metallic Nanoparticle

Tsai, Ying-Chen 21 July 2008 (has links)
Polymers are with low carrier mobility. If polymer solar cells are to exhibit high power conversion efficiencies, their carrier mobilities must be improved. Metallic NPs are promising materials for use in polymer solar cells because of their high conductivities. In this work, we studied the carrier transport characteristic of metallic nanoparticle blending into polymers. We blended Pt nanoparticles (Pt NPs) and Pd nanoparticles (Pd NPs) into polymers to improve carrier mobility, and enhance the power conversion efficiency of the polymer solar cell. P3HT was used as a donor material because of its high stability and with high absorption in visible light. PCBM was used as a acceptor material because of its high stability and with high electron transportation. We blended modified Pt NPs and Pd NPs into the P3HT:PCBM active layer, with the device configurations of ITO/PEDOT:PSS/P3HT:PCBM: Pt NPs/Al and ITO/PEDOT:PSS/P3HT:PCBM:Pd NPs/Al, respectively polymer solar cells measured was under AM 1.5G 100mW/cm2 illumination. When we blended Pt NPs into the active layer, the open-circuit remained 0.64V, the short-circuit current increased from 6.67mA/cm2 to 9mA/cm2, the power conversion efficiency increased from 1.96% to 3.08%. When we blended Pd NPs into the active layer, the open-circuit remained 0.62V, the short-circuit current increased from 6.33mA/cm2 to 7.33mA/cm2, the power conversion efficiency increased from 1.7% to 2.48%. The enhanced efficiency originated from the increased carrier mobility of the active layer when the Pt NPs or Pd NPs were present.
2

Étude quantitative TEM et STEM du mûrissement de nanoparticules de Pt et de semi-conducteur ferromagnétique Ge(Mn) / Quantitative TEM and STEM study of Pt-Nanoparticles Coarsening and Ge(Mn)-based Ferromagnetic Semiconductors

Prestat, Eric 12 July 2013 (has links)
Dans ce travail, différent systèmes ont été étudiés par des méthodes de microscopie électronique en transmission (TEM) : nanoparticules (NPs) de Pt sur du carbone amorphe, boîtes quantiques (QDs) de Ge, l'incorporation du Mn dans les QDs de Ge and des nanocolonnes (NCs) GeMn dans une matrice de Ge pure ou de GeSn. Le mûrissement de NPs de Pt sur un film de carbone amorphe a été étudié par TEM haute résolution (HRTEM) après des recuits à des températures comprises entre 200 °C et 300 °C pour des durées allant jusqu'à 160 h. Une augmentation significative de la taille moyenne des particules est observé en augmentation la durée du recuit pour toutes les températures étudiées. Une expérience de recuit in-situ a révélée deux étapes de mûrissement. La première est dominée par le mûrissement de Smoluchowski tandis que la seconde est dominée par le mûrissement d'Oswald de surface. La dépendance de type Arrhenius du coefficient de transport de masse de surface donne une énergie d'activation de Ed = 0.84 ± 0.08 eV/atome pour la diffusion des atomes de Pt sur un substrat de carbone amorphe. Des méthodes de TEM avancée ont été utilisé pour déterminer directement des profiles de concentration à l'échelle atomique et grand champ de vue par corrélation de signaux de champ sombre annulaire à grand angle (HAADF) et de spectroscopie de perte d'énergie d'électron (EELS). Cette méthode a été appliquée à l'étude de la concentration de Ge à l'échelle atomique dans le system SiGe. Le profile de concentration le long de la direction de croissance est expliqué par la ségrégation de surface des atomes de Ge pendant la croissance avec un modèle d'échange à deux états. L'incorporation de Mn dans les boîtes de Ge a été effectuée par croissance par jets moléculaire (MBE) de GeMn. Des précipités de SiMn sont formés pour des températures de croissance de 380 °C. La diminution de la température de croissance à 220 °C permet de limiter la ségrégation latérale de Mn et d'incorporer le Mn dans les QDs de Ge. Les compositions chimiques absolues obtenues par STEM-EELS prouvent que la densité atomique totale dans les NCs de GeMn est presque deux fois supérieure par rapport à la matrice de Ge. Des études structurales par HRTEM montrent les NCs cristallines sont très désordonnées. Les observations expérimentales peuvent être modélisées par une structure de phase α modifié, si des variants sont introduits pour annuler des réflexions de Bragg et des atomes de Ge sont substitués par des atomes de Mn. Les propriétés structurales et magnétiques de films GeSnMn croît par MBE à basse température (LTMBE) ont été étudiées. De manière similaire aux films GeMn, les atomes de Mn diffusent pendant la croissance et s'agrègent pour former des NCs de quelques nanomètres de diamètre, alignées verticalement et riche en Mn. Les observations TEM en vue plane montrent clairement que l'incorporation de Sn n'est pas homogène avec des concentrations en Sn dans les NCs inférieures à la limite de détection de l'EELS. La matrice présente une solution solide tandis qu'une coquille riche en Sn est formée autour des NCs de GeMn. La magnétisation dans les couches de GeSnMn est plus élevée que dans celles de GeMn. L'augmentation du moment magnétique dans les couches de GeSnMn est probablement due à la modification de la structure électronique des atomes de Mn in the NCs par la coquille de Sn. / In this work, different system have been studied using transmission electron microscopy (TEM) methods: Pt nanoparticles (NPs) on amorphous carbon, Ge quantum dots (QDs), Mn incorporation in Ge QDs and GeMn nanocolumns (NCs) embedded in Ge or GeSn matrix. The coarsening of Pt NPs on amorphous carbon film was studied by high resolution TEM (HRTEM) after annealing at temperatures between 200°C and 300°C for periods of up to 160 hours. A significant increase of the average particle size is observed with increasing annealing time for all investigated temperatures. An in-situ annealing experiment reveals two coarsening stages. The first coarsening stage is dominated by Smoluchowski ripening whereas the second coarsening stage is dominated by surface Ostwald ripening. The Arrhenius-type dependence of the derived surface mass-transport coefficients yields an activation energy Ed = 0.84 ± 0.08 eV/atom for the surface diffusion of Pt atoms on an amorphous carbon substrate. Advanced TEM methods have be used to obtain direct determination of composition profiles with atomic resolution and large field of view by correlation of high angle annular dark field (HAADF) and electron energy loss spectroscopy (EELS) signals. This method was used to obtain a direct and precise quantification of Ge concentration at the atomic level for the SiGe system. The Ge concentration profile along the growth direction was explained by Ge surface segregation during the growth with a two-state exchange model. The incorporation of Mn in Ge QDs have been performed by molecular beam epitaxy (MBE) growth of GeMn. At growth temperature of 380°C, SiMn precipitates are formed. Lowering the growth temperature at 220°C allows limiting the lateral segregation of Mn in Ge and incorporating Mn in Ge QDs. Absolute chemical composition by STEM-EELS evidenced that the total atomic density in Ge(Mn) NCs is almost two times higher than in the Ge matrix. Structural analysis by HRTEM shows that the crystalline NCs exhibit a high degree of disorder. Experimental observation can be model with a modified α-phase structure if variants are introduced to cancel reflexions and Ge atoms are substituted by Mn atoms. The structural and magnetic properties of GeSnMn films grown on Ge(001) by low temperature MBE (LTMBE) have been studied. Like in Ge(Mn) films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich NCs of a few nanometers in diameter. TEM observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical NCs lower than the EELS detection limit. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn NCs. The magnetization in GeSnMn layers is higher than in GeMn films. This magnetic moment enhancement in GeSnMn is probably related to the modification of the electronic structure of Mn atoms in the NCs by the Sn-rich shell, which is formed around the NCs.
3

Étude des interfaces des nanocatalyseurs / glucose et enzymes / O2 pour une application biopile / Study of interfaces nanocatalysts-glucose and enzymes-O2 for biofuel cell application

Tonda-Mikiela, Pradel 11 December 2012 (has links)
Les travaux présentés dans cette thèse visent à étudier les interfaces "nanocatalyseur/glucose" et "enzyme/O2" d'une biopile hybride. Dans ce cadre, une nouvelle méthode de synthèse de nanoparticules à base d'or et de platine a été développée. Ces nanomatériaux ont été caractérisés par différentes méthodes physicochimiques pour connaître leur taille, leur morphologie et leur dispersion dans un substrat carboné (Vulcan XC72R). La surface active de chaque électrode a été déterminée par voltammétrie cyclique et par CO stripping. Il a été montré que dans les catalyseurs AuxPty, l'or a un effet promoteur sur le platine vis-à-vis de l'oxydation du glucose. Le catalyseur Au70Pt30 présente la meilleure activité catalytique. L'étude par spectroélectrochimie a permis de déterminer que la B–gluconolactone est le produit primaire de l'oxydation du glucose qui procède à bas potentiel par la déshydrogénation du carbone anomérique sur le platine. La réaction de réduction de O2 a été catalysée par une enzyme, la bilirubine oxydase (BOD). Pour faciliter le transfert électronique, deux médiateurs : ABTS et un complexe d'osmium ont été encapsulés avec l'enzyme dans une matrice de Nafion® pour créer les interfaces : BOD/ABTS/O2 et BOD/Os/O2. L'étude voltammétrique des deux médiateurs en milieu tampon phosphate a révélé deux systèmes quasi-réversibles avec des potentiels apparents proches du potentiel redox du site T1 de la BOD. Bien que difficilement comparables en termes de densité de courant au catalyseur constitué de nanoparticules de platine, les cathodes enzymatiques permettent de catalyser à quatre électrons la réduction de O2 à des potentiels très proches du potentiel de Nernst. / The work developed in this thesis concerns the study of the behavior of redox reactions at the interfaces "nanocatalyst/glucose" and "enzyme/O2" for a hybrid Biofuel Cell. In this framework, a novel synthesis method of based gold and platinum nanoparticles has been achieved. These synthesized nanomaterials were characterized by different physicochemical techniques to determine their size, morphology and their dispersion in Vulcan XC72R used as substrate. The active surface area of each electrode material was determined by cyclic voltammetry and CO stripping. It has been shown that in the bimetallic catalyst gold promotes platinum activity towards the glucose oxidation. The bimetallic composition Au70Pt30 exhibits the better efficiency. The study by spectroelectrochemistry determined that the B-gluconolactone is the primary product of the glucose oxidation which proceeds at low potential by the dehydrogenation of anomeric carbon on platinum. The reduction reaction of O2 was catalyzed by an enzyme, bilirubin oxidase (BOD). Mediated electronic transfer was performed with two redox mediators, ABTS and an Osmium complex (Os). They have been encapsulated with the enzyme in a Nafion® matrix to construct the interfaces: BOD/ABTS/O2 and BOD/Os/O2. The voltammetric study of the mediators in phosphate buffer revealed two quasi-reversible systems with an apparent potential close to the theoretical potential of the T1 BOD center. Although hardly comparable in terms of current density with the Pt nanocatalyst the O2 reduction is a four electron reaction at the cathodes BOD/ABTS and BOD/Os which deliver an electrode potential close to the Nernst one.
4

STUDY OF STRUCTURE-PROPERTY-PERFORMANCE OF THE POLYMER ELECTROLYTE MEMBRANE FUEL CELLS (PEMFCS)

Chenzhao Li (14141316) 23 November 2022 (has links)
<p>  </p> <p>With the surge of interest in the electrification of transportation driven by global climate change, the need for powertrains using non-carbon energy sources has become more urgent than ever. The fuel cell electric vehicles (FCEVs) using polymer electrolyte membrane fuel cells (PEMFCs) have many advantages over the internal combustion engine (ICE) and other renewable energy vehicles such as high efficiency, zero-emission, fast fueling, unique power, and energy scalability (without heavy penalty from the increased mass). After three decades of intensive development, there are only several thousand FCEVs on the road, in contrast to the millions of battery electric vehicles (BEV) in use today. The biggest challenge of the widespread implantation of the PEMFCs is the cost, primarily due to the use of platinum catalysts. The high intrinsic catalyst activity exhibited using a rotating disc electrode (RDE) is rarely realized in the membrane electrode assembly (MEA), which is the core of PEMFC, due to the difference on the electrolyte(ionomer)/catalyst interfaces. Much of my Ph. D research effort is concentrated on how to reduce the Pt usage and improve the stability of catalyst to reduce the operation cost of fuel cells. Several approaches were practiced improving the performance of MEA in a fuel cell, such as optimizing the ink formulation and MEA fabrication method, enhancing proton conductivity of carbon support for catalysts, engineering the ionomer and catalyst interface via surface functionalization. Such studies unraveled the relationship between property, structure, and performance of MEA, and significantly improved the performance of MEA. Further, to reduce the cost of fuel cell operation, approaches that is to improve the stability of catalysts either in reducing Oswald ripening or limiting surface migration were practiced on developing novel catalysts. Such as doping anion into Pt and Ni alloy crystal structure, introducing PANI on catalyst surface. These approaches significantly improve the stability of catalyst and MEA. Finally, same as platinum group metal (PGM) catalysts, PGM-free catalysts as well as their MEAs were studied. A novel method of PGM-free MEA fabrication was developed which significantly reduced the thickness of catalyst layer, thus greatly reduced the mass transfer resistance. Also, a highly stable and active PGM-free catalyst was developed and can be considered as a strong competitor to replace the traditional PGM catalysts in MEA.</p>
5

Réalisation de transistors à un électron par encapsulation d’îlots nanométriques de platine dans une matrice diélectrique en utilisant un procédé ALD / Building single electron transistors from platinum nano-island matrices produced via atomic layer deposition

Thomas, Daniel 15 December 2017 (has links)
L'introduction du transistor à un électron (SET) a secoué l'industrie des semi-conducteurs, avec des promesses d'efficacité inégalée. Cependant, le coût et la complexité associés à la réalisation d'un fonctionnement stable ont fortement entravé leur adoption. Après être tombé en dehors des grâces de l'industrie, la recherche universitaire a continué à pousser, démontrant des techniques novatrices pour la création de SET. Au cœur de ce problème de stabilité, il y a le besoin de construire de manière contrôlable des nanoislands de moins de 10 nm. Parmi les méthodes disponibles pour cette formation nanoisland, le dépôt de couche atomique (ALD) se distingue comme un processus hautement contrôlable industriellement. La deuxième barrière à l'entrée est la création d'électrodes nanogap, utilisées pour injecter du courant à travers ces nanoislands, pour lesquelles les chercheurs se sont largement appuyés sur des techniques de fabrication non évolutives comme la lithographie par faisceau d'électrons et le faisceau ionique focalisé. La technique d'évaporation de bord d'ombre surmonte les problèmes de complexité et d'échelle de la fabrication de nanogap, ouvrant de nouvelles possibilités. Dans ce travail, ALD sera démontré comme une superbe technique pour la culture de vastes réseaux 3D de nanoparticules de platine sous 2nm encapsulées dans Al2O3. ALD a fourni un moyen de faire croître ces matrices de nanoparticules en un seul processus, sous vide et à basse température. Grâce à l'évaporation du bord d'ombre, la lithographie UV a ensuite été utilisée pour former des électrodes nanogap avec des largeurs latérales élevées (100μm), avec des écarts démontrés au-dessous de 7 nm. La combinaison de ces techniques aboutit à un procédé de fabrication à haut rendement et à faible besoin pour la construction de SET complets. A partir des transistors résultants, de fines lamelles ont été préparées à l'aide de FIB et des modèles 3D ont été reconstruits par tomographie TEM pour analyse. La caractérisation électrique a été effectuée jusqu'à 77K, avec une modélisation révélant le transport de Poole-Frenkel en parallèle à un éventuel cotunneling. Des blocus de Coulomb stables, la signature des SET, ont été observés avec une périodicité régulière et étaient identifiables jusqu'à 170K. L'optimisation de ce processus pourrait produire des SETs de surface élevée capables de fonctionner de manière stable à température ambiante. / The introduction of the single electron transistor (SET) shook the semiconductor industry, with promises of unrivaled efficiency. However, the cost and complexity associated with achieving stable operation have heavily hindered their adoption. Having fallen out of the graces of industry, academic research has continued to push, demonstrating novel techniques for SET creation. At the core of this stability issue is a need to controllably build nanoislands smaller than 10nm. Among the methods available for this nanoisland formation, atomic layer deposition (ALD) sets itself apart as an industrially scalable, highly controllable process. The second barrier to entry is the creation of nanogap electrodes, used to inject current through these nanoislands, for which researchers have leaned heavily on non-scalable fabrication techniques such as electron beam lithography and focused ion beam. The shadow edge evaporation technique overcomes the complexity and scaling issues of nanogap fabrication, opening new possibilities. In this work, ALD will be demonstrated as a superb technique for growing vast 3D arrays of sub 2nm platinum nanoparticles encapsulated in Al2O3. ALD provided a means of growing these nanoparticle matrices in a single process, under vacuum, and at low temperatures. Through shadow edge evaporation, UV lithography was then utilized to form nanogap electrodes with high lateral widths (100µm), with gaps demonstrated below 7nm. The combination of these techniques results in a high yield, low requirement fabrication process for building full SETs. From the resulting transistors, thin lamellas were prepared using FIB and 3D models were reconstructed via TEM tomography for analysis. Electrical characterization was performed down to 77K, with modeling revealing Poole-Frenkel transport alongside possible cotunneling. Stable Coulomb blockades, the signature of SETs, were observed with regular periodicity and were identifiable up to 170K. Optimization of this process could yield high surface area SETs capable of stable operation at room temperature.
6

Formation of Porous Metallic Nanostructures Electrocatalytic Studies on Self-Assembled Au@Pt Nanoparticulate Films, and SERS Activity of Inkjet Printed Silver Substrates

Banerjee, Ipshita January 2013 (has links) (PDF)
Porous, conductive metallic nanostructures are required in several fields, such as energy conversion, low-cost sensors etc. This thesis reports on the development of an electrocatalytically active and conductive membrane for use in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) and fabrication of low-cost substrates for Surface Enhanced Raman Spectroscopy (SERS). One of the main challenges facing large-scale deployment of PEMFCs currently is to fabricate a catalyst layer that minimizes platinum loading, maximizes eletrocatalytically active area, and maximizes tolerance to CO in the feed stream. Modeling the kinetics of platinum catalyzed half cell reactions occurring in a PEMFC using the kinetic theory of gases and incorporating appropriate sticking coefficients provides a revealing insight that there is scope for an order of magnitude increase in maximum current density achievable from PEMFCs. To accomplish this, losses due to concentration polarization in gas diffusion layers, which occur at high current densities, need to be eliminated. A novel catalyst design, based on a porous metallic nanostructure, which aims to overcome the limitations of concentration polarization as well as minimize the amount of platinum loading in PEMFCs is proposed. Fabrication steps involving controlled in-plane fusion of self-assembled arrays of core-shell gold-platinum nanoparticles (Au@Pt) is envisioned. The key steps involved being the development of a facile synthesis route to form Au@Pt nanoparticles with tunable platinum shell thicknesses in the 5 nm size range, the formation of large-scale 2D arrays of Au@Pt nanoparticles using guided self-assembly, and optimization of an RF plasma process to promote in-plane fusion of the nanoparticles to form porous, electrocatalytically active and electrically conductive membranes. This thesis consists of seven chapters. The first chapter provides an introduction into the topic of PEMFCs, some perspective on the current status of research and development of PEMFCs, and an outline of the thesis. The second chapter provides an overview on the methods used, characterization techniques employed and protocols followed for sample preparation. The third chapter describes the modelling of a PEMFC using the Kinetic theory of gases to arrive at an estimate of the maximum feasible current density, based on the kinetics of the electrocatalytic reactions. The fourth chapter presents the development of a simple protocol for synthesizing Au@Pt nanoparticles with control over platinum shell thicknesses from the sub monolayer coverage onwards. The results of spectroscopic and microscopic characterization establish the uniformity of coating and the absence of secondary nucleation. Chapter five describes the formation of a nanoporous, electrocatalytically active membrane by self-assembly to form bilayers of 2D arrays of Au@Pt nanoparticles and subsequent fusion using an RF plasma based process. The evolution of the electrocatalytic activity and electrical conductivity as a function of the duration of RF plasma treatment is monitored for Au@Pt nanoparticles with various extent of platinum coating. Spectroscopic, microscopic, electrical and cyclic voltammetry characterization of the samples at various stages were used to understand the structural evolution with RF plasma treatment duration and discussed. Next durability studies were carried out on the nanoporous, Au@Pt bilayer nanoparticle array with an optimum composition of Pt/Au atomic ratio of 0.88 treated to 16 minutes of argon plasma exposure. After this the novel catalyst membrane design of PEM fuel cell is revisited. Two different techniques are proposed so that the thin, nanoporous, metallic catalyst membrane achieves horizontal electronic resistance equivalent to that of the conventional gas diffusion layer with catalyst layer. The first technique proposes the introduction of gold coated polymeric mesh in between the thin, nanoporous, metallic catalyst membrane and bipolar plate and discusses the advantages. Later the gold coated polymeric mesh is introduced in a conventional membrane electrode assembly and efficiency of the polarization curves probed with and without the introduction of gold coated polymeric mesh. The second technique describes the results of fabrication of a nanoporous metallic membrane using multiple layers of 2D Au@Pt nanoparticle arrays at an optimum composition of Pt/Au atomic ratio of 0.88 to reduce the horizontal electronic resistance. Preliminary studies on the permeability of water through such membranes supported on a porous polycarbonate filter membrane are also presented. In chapter six, a simple reactive inkjet printing process for fabricating SERS active silver nanostructures on paper is presented. The process adapts a simple room temperature protocol, using tannic acid as the reducing agent, developed earlier in our group to fabricate porous silver nanostructures on paper using a commercial office inkjet printer. The results of SERS characterization, spectroscopic and microscopic characterizations of the samples and the comparison of the substrate’s long-term performance with respect to a substrate fabricated using sodium borohydride as the reducing agent is discussed. Preliminary findings on attempts to fabricate a conductive silver network using RF plasma induced fusion area also presented. Chapter seven provides a summary of the results, draws conclusions and a perspective on work required to accomplish the goals of incorporating the porous metallic nanostructures into PEMFCs.

Page generated in 0.0994 seconds