• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Development of Precursor Molecules and Reactions for Atomic Layer Deposition (ALD) of Elemental Zn and Ge

Wedisinghe, Kasuni C. January 2021 (has links)
Ultra-thin films of pure elements are important in microelectronics due to their wide range of applications. Atomic Layer Deposition (ALD) has drawn increasing attention as the thin films deposition technique for applications in microelectronics, due to its ability to deposit thin films with high conformality with atomic level control of the thickness of the film. However, due to the limited number of suitable precursor/co-reactant pairs available, only a few pure elements have been deposited successfully by ALD to date. The current study involves the synthesis and identification of potentially suitable precursor and co-reactant molecules for ALD of elemental Zn and Ge, neither of which have previously been achieved. MeZnOiPr, Zn(OiPr)2, and ZnEt2 were investigated as Zn precursors while GeCl2(Dioxane), Ge{N(SiMe3)2}2, and Ge(OCH2CH2NMe2)2 were investigated as Ge precursors. Co-reactants of interest were, 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin), PhSiH3, [H2Al(tBuNCH2CH2NMe2)] (LAlH2), BH3(NMe3), and AlH3(Quinuclidine). Ligand-exchange reactions between precursors and co-reactants were expected to produce unstable zinc or germanium hydride species, which would then reductively eliminate to produce the pure element. Solution reactivity studies were employed to identify potential precursor/co-reactant pairs. Solution reactions of Zn precursors with the selected co-reactants indicated that unstable ZnH2 is produced during the reactions, and will dissociate into its elements (Zn and H2) at room temperature. These solution reactivity studies revealed that, HBpin and LAlH2 were more reactive as co-reactants than BH3(NMe3), AlH3(Quinuclidine), and PhSiH3. Additionally, MeZnOiPr and ZnEt2 exhibited the highest reactivity as precursors, although the lower reactivity of Zn(OiPr)2 may simply be due to low solubility. Solution reactions of Ge precursors produced a polymeric mono-germanium hydride species (GeH)x, which will only dissociate into its elements upon heating at elevated temperatures. While LAlH2 indicated high reactivity with all Ge precursors, it was difficult to arrange co-reactants in order of reactivity as most reactions immediately produced insoluble (GeH)x upon mixing reagents at room temperature. Ge(OCH2CH2NMe2)2 found to be the most reactive precursor out of all Ge precursors investigated. / Thesis / Master of Science (MSc)
2

Surface-enhanced optomechanical disk resonators and force sensing / Résonateurs à disques optomécaniques améliore par leurs surfaces et capteurs de force

Guha, Biswarup 11 July 2017 (has links)
L'optomécanique est la science des interactions entre la lumière et les mouvements mécaniques. Ce rapport de thèse décrit des expériences réalisées avec des microdisques fabriqué dans différents résonateurs semi-conducteurs III-V: l'Arséniure de Gallium (GaAs), l'Arséniure d'Aluminium Gallium (AlGaAs) et l'Arséniure d'Indium Phosphide (InGaP). Ces matériaux sont compatibles avec les fonctionnalités de l’optoélectronique et procurent un couplage optomécanique géant. Pour améliorer les performances des résonateurs en GaAs, nous avons développé des méthodes de traitement de surface permettant de réduire la dissipation optique par un facteur dix et ainsi d'atteindre un facteur de qualité de six millions. En plus de ces études sur le GaAs, nous avons réalisés une étude comparative des interactions optomecaniques dans des microdisques d'InGaP et d'AlGaAs, et nous avons mis en évidences leurs résonances optomécaniques. Finalement, nous avons réalisé des mesures de force avec des résonateurs en GaAs, démontrant un nouveau principe de détection basé sur notre étude de leur la trajectoire dans l'espace de phase et leur bruit de phase / Optomechanics studies the interaction between light and mechanical motion. This PhD thesis reports on optomechanical experiments carried with miniature disk resonators fabricated out of distinct III-V semiconductors: Gallium Arsenide (GaAs), Aluminium Gallium Arsenide (AlGaAs) and Indium Gallium Phosphide (InGaP). These materials are compliant with optoelectronics functionalities and provide giant optomechanical coupling. In order to boost performances of GaAs resonators, we implemented surface control techniques and obtained a ten-fold reduction of optical dissipation, attaining a Q of six million. On top of GaAs, we performed a comparative investigation of optomechanical interactions in InGaP and AlGaAs disk resonators, and demonstrated their operation as optomechanical oscillators. Finally, we carried out optomechanical force sensing experiments with GaAs resonators, analyzing a new sensing principle in light of the phase space trajectory and phase noise of the corresponding oscillators
3

Réalisation de transistors à un électron par encapsulation d’îlots nanométriques de platine dans une matrice diélectrique en utilisant un procédé ALD / Building single electron transistors from platinum nano-island matrices produced via atomic layer deposition

Thomas, Daniel 15 December 2017 (has links)
L'introduction du transistor à un électron (SET) a secoué l'industrie des semi-conducteurs, avec des promesses d'efficacité inégalée. Cependant, le coût et la complexité associés à la réalisation d'un fonctionnement stable ont fortement entravé leur adoption. Après être tombé en dehors des grâces de l'industrie, la recherche universitaire a continué à pousser, démontrant des techniques novatrices pour la création de SET. Au cœur de ce problème de stabilité, il y a le besoin de construire de manière contrôlable des nanoislands de moins de 10 nm. Parmi les méthodes disponibles pour cette formation nanoisland, le dépôt de couche atomique (ALD) se distingue comme un processus hautement contrôlable industriellement. La deuxième barrière à l'entrée est la création d'électrodes nanogap, utilisées pour injecter du courant à travers ces nanoislands, pour lesquelles les chercheurs se sont largement appuyés sur des techniques de fabrication non évolutives comme la lithographie par faisceau d'électrons et le faisceau ionique focalisé. La technique d'évaporation de bord d'ombre surmonte les problèmes de complexité et d'échelle de la fabrication de nanogap, ouvrant de nouvelles possibilités. Dans ce travail, ALD sera démontré comme une superbe technique pour la culture de vastes réseaux 3D de nanoparticules de platine sous 2nm encapsulées dans Al2O3. ALD a fourni un moyen de faire croître ces matrices de nanoparticules en un seul processus, sous vide et à basse température. Grâce à l'évaporation du bord d'ombre, la lithographie UV a ensuite été utilisée pour former des électrodes nanogap avec des largeurs latérales élevées (100μm), avec des écarts démontrés au-dessous de 7 nm. La combinaison de ces techniques aboutit à un procédé de fabrication à haut rendement et à faible besoin pour la construction de SET complets. A partir des transistors résultants, de fines lamelles ont été préparées à l'aide de FIB et des modèles 3D ont été reconstruits par tomographie TEM pour analyse. La caractérisation électrique a été effectuée jusqu'à 77K, avec une modélisation révélant le transport de Poole-Frenkel en parallèle à un éventuel cotunneling. Des blocus de Coulomb stables, la signature des SET, ont été observés avec une périodicité régulière et étaient identifiables jusqu'à 170K. L'optimisation de ce processus pourrait produire des SETs de surface élevée capables de fonctionner de manière stable à température ambiante. / The introduction of the single electron transistor (SET) shook the semiconductor industry, with promises of unrivaled efficiency. However, the cost and complexity associated with achieving stable operation have heavily hindered their adoption. Having fallen out of the graces of industry, academic research has continued to push, demonstrating novel techniques for SET creation. At the core of this stability issue is a need to controllably build nanoislands smaller than 10nm. Among the methods available for this nanoisland formation, atomic layer deposition (ALD) sets itself apart as an industrially scalable, highly controllable process. The second barrier to entry is the creation of nanogap electrodes, used to inject current through these nanoislands, for which researchers have leaned heavily on non-scalable fabrication techniques such as electron beam lithography and focused ion beam. The shadow edge evaporation technique overcomes the complexity and scaling issues of nanogap fabrication, opening new possibilities. In this work, ALD will be demonstrated as a superb technique for growing vast 3D arrays of sub 2nm platinum nanoparticles encapsulated in Al2O3. ALD provided a means of growing these nanoparticle matrices in a single process, under vacuum, and at low temperatures. Through shadow edge evaporation, UV lithography was then utilized to form nanogap electrodes with high lateral widths (100µm), with gaps demonstrated below 7nm. The combination of these techniques results in a high yield, low requirement fabrication process for building full SETs. From the resulting transistors, thin lamellas were prepared using FIB and 3D models were reconstructed via TEM tomography for analysis. Electrical characterization was performed down to 77K, with modeling revealing Poole-Frenkel transport alongside possible cotunneling. Stable Coulomb blockades, the signature of SETs, were observed with regular periodicity and were identifiable up to 170K. Optimization of this process could yield high surface area SETs capable of stable operation at room temperature.
4

Transiente Simulation zur Optimierung von ALD-Prozessen

Jäckel, Linda 24 September 2013 (has links)
Für die Beschichtung von Bauelementen im Bereich der Elektronik erlangt das Beschichtungsverfahren der Atomlagenabscheidung zunehmend an Bedeutung. Dieses Verfahren überzeugt hier durch seine Fähigkeit sehr homogene Schichten mit einer Dicke von wenigen nm auch auf Strukturen mit hohen Aspektverhältnissen zu erzeugen. Diese Arbeit beschäftigt sich mit der Atomlagenabscheidung von Aluminiumoxid unter Verwendung der Präkursoren Trimethylaluminium und Wasser. Hauptaufgabe dieser Arbeit ist die Modellierung eines experimentellen Prozessaufbaus mit kommerzieller Simulationssoftware. Anhand der Simulationsergebnisse können Aussagen zur Optimierung des ALD-Prozesses getroffen werden. Die durchgeführten Untersuchungen zeigen, dass für die Simulation eines ALD-Prozesses sehr lange Rechenzeiten erforderlich sind. Insbesondere konnte ein tieferes Verständnis der automatischen Zeitschrittweitenregulierung der Software bei transienten Simulationen gewonnen werden. Die Dauer der Spülschritte wurde durch die Simulationsergebnisse als ausreichend bestätigt. Des Weiteren kann die Verwendung der zur Anlage gehörigen Gasdusche anhand der Simulationsergebnisse nicht empfohlen werden.
5

Beeinflussung funktionaler Schichteigenschaften bei der thermischen Atomlagenabscheidung von Tantalnitrid sowie Ruthenium

Walther, Tillmann 03 April 2014 (has links)
Thermische TaN ALD mit den Präkursoren TBTDET und TBTEMT, NH3 als zweiten Reaktanten und Ar als inertes Spülgas ist untersucht worden. Als Messverfahren zur Bewertung ist zeitlich aufgelöste in-situ spektroskopische Ellipsometrie mit einer Datenerfassungsrate von 0,86 Datenpunkte/s, sowie in-vacuo XPS und AFM verwendet worden. Es konnten sehr glatte homogene geschlossene TaN-Dünnschichten mit einem Ta:N-Verhältnis von 0,6, -Verunreinigungen von ca. 5 at.% (TBTDET) bzw. 9 at.% (TBTEMT) und einem GPC von ca. 0,6 nm/Zyklus im linearen Wachstumsbereich hergestellt werden. Eine O3-Vorbehandlung einer SiO2-Oberfläche beschleunigt die initiale Phase der TaN-Abscheidung. Die abgeschiedenen TaN-Schichten zeigen sich sehr reaktiv auf O2.:1. Einleitung 1 I. Theorie 4 2. Anwendungsfelder von TaN & Ru-ALD-Dünnschichten 5 2.1. Anwendungsfelder von TaN ALD Dünnschichten 5 2.2. Anwendungsfelder von Ru ALD Dünnschichten 5 2.3. TaN/Ru-Schichtstapel als Cu-Diffusionsbarriere 6 3. Atomlagenabscheidung (ALD) 8 3.1. Idealisiertes Grundprinzip der ALD 8 3.2. Mögliche Nichtidealitäten eines ALD-Prozesses 10 3.3. Klassifikation von ALD-Prozessen 12 3.4. TaN-Abscheidung mithilfe eines thermischen TBTDET bzw. TBTEMT und NH3-Prozesses 13 3.5. Ru-Abscheidung mithilfe eines ALD-Prozesses 16 4. Grundlagen von Schichtcharakterisierungsmethoden 17 4.1. Spektroskopische Ellipsometrie (SE) 17 4.2. Röntgenphotonenelektronenspektroskopie (XPS) 19 4.3. Rasterkraftmikroskopie im nicht-Kontakt-Modus (non-contact AFM) 20 4.4. Vierspitzenprober (4PP) 21 II. Praxis 23 5. Experimentelle Methodik 24 5.1. ALD-Reaktor mit in-situ Ellipsometer und in-vacuo XPS und AFM/STM 24 5.1.1. Prozesskammer 24 5.1.2. In-situ Ellipsometer und in-vakuo Messtechnik 24 5.1.3. Bei ALD TaN-Prozessen verwendete Parameter 25 5.2. ALD-Reaktor mit Blitzlampenfeld für Blitz-ALD 26 5.3. Vorgehensweise bei der in-situ Ellipsometrie 27 5.3.1. Übersicht 27 5.3.2. Details zur Datenerfassung 29 5.3.3. Details zur optischen Modellierung 32 5.3.4. Datennachbearbeitung: Erstellung von ALD-Zyklus-Wachstums Diagrammen 40 5.3.5. Datennachbearbeitung: Extrahierung von Parametern aus ALDZyklus-Wachstums Diagrammen 41 5.3.6. Fehlerbetrachtung 43 5.4. Vorgehensweise bei XPS-Experimenten 43 5.5. Weitere verwendete ex-situ Messtechniken 45 5.6. O2-Aufnahme einer abgeschiedenen TaN-Schicht 46 6. Thermische ALD TaN Schichtuntersuchungen an iSE-ALD-Anlage 47 6.1. O3-Vorbehandlung 47 6.1.1. Einführung 47 6.1.2. Auswirkungen auf natives und thermisches SiO2 47 6.1.3. Temperatureinfluss 49 6.2. Analyse mithilfe von Präkursor TBTDET abgeschiedener thermischer ALD TaN Dünnschichten 50 6.2.1. Verwendete Prozessparameter 50 6.2.2. Initialer (heterogener) Wachstumsbereich 51 6.2.3. Linearer (homogener) Wachstumsbereich 52 6.2.4. CVD-Verhalten von TBTDET bei 160 und 210 C 55 6.2.5. Nachbehandlungen (Tempern und O2-Aufnahme) 56 6.2.6. Fazit 58 6.3. Analyse mithilfe von Präkursor TBTEMT abgeschiedener thermischer ALD TaN Dünnschichten 58 6.3.1. Initialer (heterogener) Wachstumsbereich 58 6.3.2. Linearer (homogener) Wachstumsbereich 60 6.3.3. Nachbehandlung mit O2 64 6.3.4. Fazit 64 6.4. Vergleich der Präkursoren TBTDET & TBTEMT für die thermische TaN-ALD 66 6.4.1. Einführung 66 6.4.2. Vergleich XPS-Ergebnisse & O2-Aufnahme 68 6.4.3. Vergleich iSE-Ergebnisse 68 6.4.4. Vergleich AFM-Ergebnisse 70 6.4.5. Fazit 70 7. Prozessentwicklung an Flash-ALD-Anlage 72 7.1. Einführung 72 7.2. Temperaturvariation 73 7.3. Pulszeitvariationen 74 7.4. Eigenzersetzung von TBTEMT (CVD-Abscheidung) 77 7.5. Zusammenfassung zur Prozessentwicklung 78 7.6. Erste Ergebnisse zum Blitzeinfluss 78 7.6.1. Einführung 78 7.6.2. Rauheit (AFM-Ergebnisse) 79 7.6.3. chemische Zusammensetzung(XPS-Ergebnisse) 80 8. Zusammenfassung und Ausblick 82 III. Anhang 84 A. XPS-Ergebnis von O2-Nachbehandlung mit Präkursor TBTEMT 85 Literaturverzeichnis 86 / Thermal ALD with the precursors TBTDET and TBTEMT, NH3 as the second reactant and Ar as inert purging gas was studied. For measuring purposes time-resolved in-situ spectroscopic ellipsometry with an data acquisition rate of 0,86 data points/s, in-vacuo XPS and AFM was used. It was possible to deposit very smmoth homogenous closed TaN thin films with a Ta:N rate of about 0,6, contaminations of 5 at.% (TBTDET) and 9 at.% (TBTEMT), respectively, and a GPC of about 0,6 nm/Zyklus. An O3 pretreatment of a SiO2 surface accelerated the initial phase of the TaN atomic layer deposition (ALD) deposition. These TaN-Schichten were very reactiv against O2.:1. Einleitung 1 I. Theorie 4 2. Anwendungsfelder von TaN & Ru-ALD-Dünnschichten 5 2.1. Anwendungsfelder von TaN ALD Dünnschichten 5 2.2. Anwendungsfelder von Ru ALD Dünnschichten 5 2.3. TaN/Ru-Schichtstapel als Cu-Diffusionsbarriere 6 3. Atomlagenabscheidung (ALD) 8 3.1. Idealisiertes Grundprinzip der ALD 8 3.2. Mögliche Nichtidealitäten eines ALD-Prozesses 10 3.3. Klassifikation von ALD-Prozessen 12 3.4. TaN-Abscheidung mithilfe eines thermischen TBTDET bzw. TBTEMT und NH3-Prozesses 13 3.5. Ru-Abscheidung mithilfe eines ALD-Prozesses 16 4. Grundlagen von Schichtcharakterisierungsmethoden 17 4.1. Spektroskopische Ellipsometrie (SE) 17 4.2. Röntgenphotonenelektronenspektroskopie (XPS) 19 4.3. Rasterkraftmikroskopie im nicht-Kontakt-Modus (non-contact AFM) 20 4.4. Vierspitzenprober (4PP) 21 II. Praxis 23 5. Experimentelle Methodik 24 5.1. ALD-Reaktor mit in-situ Ellipsometer und in-vacuo XPS und AFM/STM 24 5.1.1. Prozesskammer 24 5.1.2. In-situ Ellipsometer und in-vakuo Messtechnik 24 5.1.3. Bei ALD TaN-Prozessen verwendete Parameter 25 5.2. ALD-Reaktor mit Blitzlampenfeld für Blitz-ALD 26 5.3. Vorgehensweise bei der in-situ Ellipsometrie 27 5.3.1. Übersicht 27 5.3.2. Details zur Datenerfassung 29 5.3.3. Details zur optischen Modellierung 32 5.3.4. Datennachbearbeitung: Erstellung von ALD-Zyklus-Wachstums Diagrammen 40 5.3.5. Datennachbearbeitung: Extrahierung von Parametern aus ALDZyklus-Wachstums Diagrammen 41 5.3.6. Fehlerbetrachtung 43 5.4. Vorgehensweise bei XPS-Experimenten 43 5.5. Weitere verwendete ex-situ Messtechniken 45 5.6. O2-Aufnahme einer abgeschiedenen TaN-Schicht 46 6. Thermische ALD TaN Schichtuntersuchungen an iSE-ALD-Anlage 47 6.1. O3-Vorbehandlung 47 6.1.1. Einführung 47 6.1.2. Auswirkungen auf natives und thermisches SiO2 47 6.1.3. Temperatureinfluss 49 6.2. Analyse mithilfe von Präkursor TBTDET abgeschiedener thermischer ALD TaN Dünnschichten 50 6.2.1. Verwendete Prozessparameter 50 6.2.2. Initialer (heterogener) Wachstumsbereich 51 6.2.3. Linearer (homogener) Wachstumsbereich 52 6.2.4. CVD-Verhalten von TBTDET bei 160 und 210 C 55 6.2.5. Nachbehandlungen (Tempern und O2-Aufnahme) 56 6.2.6. Fazit 58 6.3. Analyse mithilfe von Präkursor TBTEMT abgeschiedener thermischer ALD TaN Dünnschichten 58 6.3.1. Initialer (heterogener) Wachstumsbereich 58 6.3.2. Linearer (homogener) Wachstumsbereich 60 6.3.3. Nachbehandlung mit O2 64 6.3.4. Fazit 64 6.4. Vergleich der Präkursoren TBTDET & TBTEMT für die thermische TaN-ALD 66 6.4.1. Einführung 66 6.4.2. Vergleich XPS-Ergebnisse & O2-Aufnahme 68 6.4.3. Vergleich iSE-Ergebnisse 68 6.4.4. Vergleich AFM-Ergebnisse 70 6.4.5. Fazit 70 7. Prozessentwicklung an Flash-ALD-Anlage 72 7.1. Einführung 72 7.2. Temperaturvariation 73 7.3. Pulszeitvariationen 74 7.4. Eigenzersetzung von TBTEMT (CVD-Abscheidung) 77 7.5. Zusammenfassung zur Prozessentwicklung 78 7.6. Erste Ergebnisse zum Blitzeinfluss 78 7.6.1. Einführung 78 7.6.2. Rauheit (AFM-Ergebnisse) 79 7.6.3. chemische Zusammensetzung(XPS-Ergebnisse) 80 8. Zusammenfassung und Ausblick 82 III. Anhang 84 A. XPS-Ergebnis von O2-Nachbehandlung mit Präkursor TBTEMT 85 Literaturverzeichnis 86
6

Entwicklung und Verifikation eines kombinierten Kinetic Monte Carlo / Molekulardynamik Modells zur Simulation von Schichtabscheidungen

Lorenz, Erik 09 June 2012 (has links)
Atomlagenabscheidung (ALD, Atomic Layer Deposition) ist als präzise Technik zur Abscheidung dünner Schichten bekannt. Mittels wechselweisen Einleitens von Precursorgasen in einen Reaktor erzeugt der Prozess auch auf strukturierten Substraten gleichmäßige dünne Schichten. Durch die selbstsättigende Natur der zu Grunde liegenden Reaktionen sind sowohl die Wachstumsrate als auch die Zusammensetzung wohldefiniert, weshalb sich Atomlagenabscheidung beispielsweise zur Herstellung nanoskopischer Bauelemente im Bereich der Mikroelektronik eignet. Obwohl Aluminiumoxid vermehrt Aufmerksamkeit für seine hohe Bandlücke (~9 eV) sowie die relativ hohe Dielektrizitätskonstante (k ~ 9) geerntet hat, ist oftmals trotz vielseitiger Untersuchungen der anwendbaren Precursorpaare nur wenig über die strukturellen Eigenschaften sowie die Wachstumskriterien der resultierenden Schichten bekannt. In dieser Arbeit wurde eine kombinierte Simulationsmethode entwickelt, mit der sich Atomlagenabscheidung mittels elementarer Reaktionen auf beliebig strukturierten Substraten simulieren lässt. Molekulardynamische Berechnungen ermöglichen dabei atomare Genauigkeit, wohingegen die Ankunft der individuellen Precursoratome durch Kinetic Monte Carlo-Methoden dargestellt werden. Diese Aufteilung erlaubt die Kopplung der molekulardynamischen Präzision mit den Größenordnungen einer KMC-Simulation, welche prinzipiell die Betrachtung von Milliarden von Atomen zulässt. Durch asynchrone Parallelisierung mit bis zu tausenden Arbeiterprozessen wird zudem die Effizienz gegenüber einer herkömmlichen Molekulardynamiksimulation ausreichend erhöht, um binnen weniger Stunden mehrere Abscheidungszyklen nahezu unabhängig von der Größe des betrachteten Raumes, welche im Bereich von Quadratmikrometern liegen kann, zu simulieren. Zur abschließenden Validierung des Modells und seiner Implementierung werden einerseits Versuche einfacher Schichtwachstumsprozesse unternommen, andererseits wird die Atomlagenabscheidung des wohluntersuchten Precursorpaares Trimethylaluminium (TMA, Al(CH3)3) und Wasser simuliert und die resultierende Schicht auf Übereinstimmung mit bestehenden Daten geprüft.:1 Einführung 1.1 Anwendungen von Atomlagenabscheidung 1.2 Aktueller Stand 1.2.1 Experimentelle Untersuchungen 1.2.2 Kinetic Monte Carlo-Simulationen von Dwivedi 1.2.3 Kinetic Monte Carlo-Simulationen von Mazaleyrat 1.2.4 Molekulardynamik-Simulationen 1.2.5 Dichtefunktionaltheoretische Rechnungen von Musgrave 1.3 Motivation 2 Grundlagen 2.1 Atomlagenabscheidung 2.1.1 Einführung zur Atomlagenabscheidung 2.1.2 ALD von Metalloxiden 2.1.3 ALD von Al2O3 2.2 Kinetic Monte Carlo Methoden 2.2.1 KMC-Formalismus 2.2.2 KMC-Algorithmen 2.3 Molekulardynamik 2.3.1 Grundlagen 2.3.2 Methoden zur Ensembledarstellung 2.3.3 Potentialarten 2.3.4 Numerische Optimierungen 3 Kombiniertes Modell 3.1 Verwendetes Kinetic Monte Carlo-Modell 3.2 Kombiniertes Modell 3.2.1 Abscheidungszyklus 3.2.2 Simulationsraum 3.2.3 Ereignisse 3.2.4 Parallelisierungsmethode 3.2.5 Abhängigkeitsgraph 4 Implementierung 4.1 Existierende Software 4.1.1 LAMMPS 4.1.2 SPPARKS 4.1.3 Sonstige Software 4.2 LibKMC 4.2.1 Modularisierung 4.2.2 Abhängigkeiten 4.3 Implementierung des kombinierten Modells 4.3.1 Vorstellung der Software 4.3.2 Einbindung von LibKMC 4.3.3 Einbindung von LAMMPS 4.3.4 Host-Worker-System 4.3.5 Substratgenerierung 5 Validierung 5.1 Validierung des kombinierten Modelles 5.1.1 Wachstumskriterium 5.1.2 Sättigungskriterium 5.1.3 Parallelisierungseffizienz 5.2 Untersuchungen von Al2O3 5.2.1 Potentialuntersuchungen 5.2.2 Schichtwachstumseigenschaften 5.2.3 Strukturanalyse 6 Zusammenfassung und Ausblick Literaturverzeichnis Danksagung
7

Untersuchungen zur Oberflächenchemie der Atomlagenabscheidung und deren Einfluss auf die Effizienz von Prozessen

Rose, Martin 25 November 2010 (has links)
In dieser Arbeit werden verschiedene Prozesse zur Atomlagenabscheidung (ALD) von TiO2 und HfO2 experimentell untersucht. Die Untersuchungen schließen eine experimentelle Charakterisierung des Schichtwachstums sowie eine massenspektrometrische Analyse der Reaktionsprodukte ein. Im Detail wurden der ALD-Prozess mit Cp*Ti(OMe)3 und Ozon zur Abscheidung von TiO2 sowie der ALD-Prozess mit TEMAHf und Ozon zur Abscheidung von HfO2 untersucht. Der theoretische Teil der Arbeit beginnt mit einer Methode zur Bestimmung des absoluten Haftkoeffizienten. Anschließend werden numerische Modelle entwickelt, welche die Adsorption von Präkursormolekülen durch strukturierte Substrate beschreiben. Diese Modelle enthalten die Substratstruktur und den absoluten Haftkoeffizienten. Es wird eine statistische numerische Methode entwickelt, mit der der Gastransport in dem ALD-Reaktor statistisch beschrieben wird. Die statistischen Größen, welche die Gasdynamik im Reaktor beschreiben, werden mit der Discrete Simulation Monte Carlo (DSMC) Methode bestimmt. Mit dieser Methode und den Modellen der Adsorption kann der komplette ALD-Prozess simuliert werden. Die neu entwickelte Methode wird verwendet um die Effizienz verschiedener ALD-Reaktoren in Abhängigkeit des absoluten Haftkoeffizienten, der Substratstruktur sowie der Prozessbedingungen zu untersuchen. Die Geometrie des Reaktors wird variiert und mit der Referenzgeometrie verglichen.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135 / This dissertation is divided into an experimental part and a theoretical part. The experimental part describes the atomic layer deposition (ALD) of TiO2 and HfO2. TDMAT and Cp*Ti(OMe)3 were used as titanium precursors, while TEMAHf was used as the hafnium precursor. Ozone was used as the oxygen source. The self limiting film growth and the temperature window of these ALD processes were investigated. The reaction by-products of the Cp*Ti(OMe)3/O3 process were identified by quadrupol mass spectrometry (QMS). The QMS analysis of the TEMAHf/O3 process revealed that water is formed during the metal precursor pulse. The theoretical part of this thesis describes the development of models and numerical methods to simulate the ALD as a whole. First of all, a model for the adsorption of precursor molecules by planar substrates was developed. This model was extended to describe the adsorption of precursor molecules inside a cylindrical hole with an aspect ratio of 20, 40 and 80. The adsorption of precursor molecules is dominated by the absolute sticking coefficient (SC), i.e., the reactivity of the precursor molecules. From the numerical model the saturation profiles along the wall of a cylindrical hole can be determined. From the comparison of the simulated profile with an experimentally determined thickness profile the SC can be determined. This method was used to determine the SC of the precursors examined in the experimental part. The SC of TEMAHf increases exponentially with the substrate temperature. A discrete particle method (DSMC) was used to derive a statistical description of the gas kinetics inside an ALD reactor. Combining the statistical description of the gas transport and the numerical models of the adsorption, it is possible to simulate the ALD for any combination of reactor, substrate and SC. It is possible to distinguish the contribution of the reactor geometry, the process parameters and the process chemistry (SC) to the process efficiency. Therefore, the ALD reactor geometry can be optimized independently of the process chemistry. This method was used to study a shower head ALD reactor. The reactor geometry, the composition of the gas at the inlet and the position of the inlet nozzles was varied in order to find more efficient ALD reactors. The efficiency of the reference geometry is limited by the inlet nozzles close to the exhaust and the decrease of the pressure on the substrate near the exhaust. The efficiency of ALD processes with different SCs was simulated for planar and structured substrates with a diameter of 300 mm and 450 mm.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135
8

Atomic Layer Deposition and Microanalysis of Ultrathin Layers

Melzer, Marcel 17 October 2012 (has links)
Carbon nanotubes (CNTs) are a highly promising material for future interconnects. It is expected that the decoration of CNTs with Cu particles or also the filling of the interspaces between the CNTs with Cu instead of the currently used SiO2 can enhance the performance of CNT-based interconnects. Due to the high aspect ratio of CNTs an appropriate deposition technique has to be applied which is able to coat such structures uniformly. The current work is therefore considered with thermal atomic layer deposition (ALD) of CuxO from the liquid Cu (I) β-diketonate precursor [(nBu3P)2Cu(acac)] and wet oxygen at 135°C on variously pretreated multi-walled CNTs. The different in-situ pre-treatments of the CNTs with oxygen, water vapor and wet oxygen in a temperature range from 100 to 300°C at a pressure of 1.33 mbar have been carried out prior to the ALD to enable uniform nucleation on the otherwise chemical inert CNT surface. The reduction of the CuxO as well as the filling of the space between the CNTs is not part of this work. Variations of the oxidation temperature as well as the oxidation agents resulted in different growth modes of the CuxO. An oxidation with wet oxygen at 300°C yielded in a partially layer like growth of the CuxO. It is expected that this growth mode is connected to a partial destruction of the outer CNT shell due to the oxidation. However, the damage introduced to the CNTs was not high enough to be detected by Raman spectroscopy. For all other investigated pretreatments, the formation of nanoparticles (NPs) was observed by electron microscopy. This formation of CuxO NPs can be explained by the metal-tube-interaction. Furthermore, the NPs probably decorate defect sites of the CNTs due to their higher reactivity. Additionally, analysis of energy-dispersive X-ray spectroscopy and spectroscopic ellipsometry measurements suggests that the used precursor [(nBu3P)2Cu(acac)] requires reactive oxygen surface groups for initiating the ALD growth. The observation of layer-like growth of CuxO on CNTs pretreated with wet oxygen at 300°C appears promising for deposition processes of Cu seed layers on CNTs. However, more aggressive pretreatments at higher temperatures or with more aggressive oxidation agents could be required to enable layer like growth on the entire CNTs.

Page generated in 0.1276 seconds