• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D-Modellierung des Partikeltransportes in Nanostrukturen zur Simulation von chemischen Schichtabscheidungen

Gehre, Joshua 12 October 2021 (has links)
Für die Herstellung von immer kleiner werdenden elektronischen Bauteilen ist es notwendig, Schichten verschiedener Stoffe auf einem Substrat abzuscheiden. Dazu werden häufig Verfahren verwendet, bei denen Gase in kleine Strukturen eindringen und dort an der Oberfläche reagieren. Damit können Schichten abgeschieden werden. Bei der Gasströmung in mikroskopischen Strukturen auf einem Wafer zeigt sich ein anderes Strömungsverhalten als bei einer Gasströmung in einer makroskopischen Struktur bei Normaldruck. Dabei sind Kollisionen zwischen Gasteilchen oft vernachlässigbar, und die Kollisionen von Teilchen mit der Geometrie, in der sich das Gas befindet, überwiegen. Zur Untersuchung solcher Vorgänge ist es von Interesse, eine derartige Gasströmung und die entsprechenden Schichtabscheidungen simulieren zu können. In dieser Arbeit wurde ein Simulationsverfahren entwickelt, welches Gase im Bereich der freien Molekülströmung und deren chemische und physikalische Interaktionen an Oberflächen simulieren kann. Die Simulationen sind dabei speziell für die freie Molekülströmung optimiert und ist nicht auf viele Aspekte angewiesen, die in anderen Strömungsregimen notwendig sind. Dies geschieht mittels einer Monte-Carlo-Simulation von Teilchen, welche mittels Pfadverfolgung in einer beliebigen dreidimensionalen Geometrie simuliert werden können. Dabei kann eine große Menge an verschiedenen Wechselwirkungen von Teilchen mit den Wänden der Geometrie simuliert werden. Es erfolgten Vergleiche mit bekannten Literaturwerten, wie der Durchlasswahrscheinlichkeit eines Zylinders oder einem einzelnen ALD Schritt in einem zylinderförmigen Loch bei verschiedenen Adsorptionswahrscheinlichkeiten. Das verwendete Simulationsverfahren erlaubt eine einfache Erweiterung von Wechselwirkungen, welche an Oberflächen auftreten können. So wurde auch ein PVD Verfahren und der Einfluss eines Kollimators auf die Teilchenströmung untersucht.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Symbolverzeichnis 1 Motivation und Einführung 2 Grundlagen 2.1 Knudsenzahl 2.1.1 Strömungsregime 2.1.2 Mittlere freie Weglänge bei verschiedenen Teilchenarten 2.2 Schichtabscheidungen 2.2.1 Chemische Gasphasenabscheidung 2.2.2 Atomlagenabscheidung 2.2.3 Physikalische Gasphasenabscheidung 2.3 Chemische Reaktionen an Oberflächen 2.3.1 Adsorption an einer freien Oberfläche 2.4 Simulationsansätze 2.4.1 Direct Simulation Monte Carlo 2.4.2 Angular Coefficient Method 2.4.3 Pfadverfolgung von Teilchen 2.4.4 Finite Volumen Methoden 3 Modellentwicklung 3.1 Grundidee 3.2 Interaktionen an Wänden 3.2.1 Reflexion und Reemission von Teilchen 3.2.2 Chemische Reaktionen 3.2.3 Tabellierte Oberflächeninteraktionen 3.3 Erweiterung für Bereiche geringerer Knudsenzahlen 3.4 Implementation 3.4.1 Wandkollisionen 3.4.2 Raytracing und Unterteilung der Geometrie 3.4.3 Simulationsdefinition 3.4.4 Simulationen in 2D 4 Simulationen und Ergebnisse 4.1 Durchlasswahrscheinlichkeit eines Hohlzylinders 4.2 Durchlasswahrscheinlichkeit durch ein gekrümmtes Rohr in 2D 4.3 ALD in einem zylinderförmigen Loch 4.4 Gleichgewicht zwischen Adsorption und Desorption an einer Oberfläche 4.5 Sputterabscheidung von Kupfer in einem PVD-Reaktor 4.5.1 Simulationen in einem Vakuum 4.5.2 Simulation bei Verwendung eines Hintergrundgases 5 Zusammenfassung und Ausblick 5.1 Zusammenfassung 5.2 Ausblick Literaturverzeichnis Danksagung Selbstständigkeitserklärung
2

Untersuchungen zur Oberflächenchemie der Atomlagenabscheidung und deren Einfluss auf die Effizienz von Prozessen

Rose, Martin 25 November 2010 (has links)
In dieser Arbeit werden verschiedene Prozesse zur Atomlagenabscheidung (ALD) von TiO2 und HfO2 experimentell untersucht. Die Untersuchungen schließen eine experimentelle Charakterisierung des Schichtwachstums sowie eine massenspektrometrische Analyse der Reaktionsprodukte ein. Im Detail wurden der ALD-Prozess mit Cp*Ti(OMe)3 und Ozon zur Abscheidung von TiO2 sowie der ALD-Prozess mit TEMAHf und Ozon zur Abscheidung von HfO2 untersucht. Der theoretische Teil der Arbeit beginnt mit einer Methode zur Bestimmung des absoluten Haftkoeffizienten. Anschließend werden numerische Modelle entwickelt, welche die Adsorption von Präkursormolekülen durch strukturierte Substrate beschreiben. Diese Modelle enthalten die Substratstruktur und den absoluten Haftkoeffizienten. Es wird eine statistische numerische Methode entwickelt, mit der der Gastransport in dem ALD-Reaktor statistisch beschrieben wird. Die statistischen Größen, welche die Gasdynamik im Reaktor beschreiben, werden mit der Discrete Simulation Monte Carlo (DSMC) Methode bestimmt. Mit dieser Methode und den Modellen der Adsorption kann der komplette ALD-Prozess simuliert werden. Die neu entwickelte Methode wird verwendet um die Effizienz verschiedener ALD-Reaktoren in Abhängigkeit des absoluten Haftkoeffizienten, der Substratstruktur sowie der Prozessbedingungen zu untersuchen. Die Geometrie des Reaktors wird variiert und mit der Referenzgeometrie verglichen.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135 / This dissertation is divided into an experimental part and a theoretical part. The experimental part describes the atomic layer deposition (ALD) of TiO2 and HfO2. TDMAT and Cp*Ti(OMe)3 were used as titanium precursors, while TEMAHf was used as the hafnium precursor. Ozone was used as the oxygen source. The self limiting film growth and the temperature window of these ALD processes were investigated. The reaction by-products of the Cp*Ti(OMe)3/O3 process were identified by quadrupol mass spectrometry (QMS). The QMS analysis of the TEMAHf/O3 process revealed that water is formed during the metal precursor pulse. The theoretical part of this thesis describes the development of models and numerical methods to simulate the ALD as a whole. First of all, a model for the adsorption of precursor molecules by planar substrates was developed. This model was extended to describe the adsorption of precursor molecules inside a cylindrical hole with an aspect ratio of 20, 40 and 80. The adsorption of precursor molecules is dominated by the absolute sticking coefficient (SC), i.e., the reactivity of the precursor molecules. From the numerical model the saturation profiles along the wall of a cylindrical hole can be determined. From the comparison of the simulated profile with an experimentally determined thickness profile the SC can be determined. This method was used to determine the SC of the precursors examined in the experimental part. The SC of TEMAHf increases exponentially with the substrate temperature. A discrete particle method (DSMC) was used to derive a statistical description of the gas kinetics inside an ALD reactor. Combining the statistical description of the gas transport and the numerical models of the adsorption, it is possible to simulate the ALD for any combination of reactor, substrate and SC. It is possible to distinguish the contribution of the reactor geometry, the process parameters and the process chemistry (SC) to the process efficiency. Therefore, the ALD reactor geometry can be optimized independently of the process chemistry. This method was used to study a shower head ALD reactor. The reactor geometry, the composition of the gas at the inlet and the position of the inlet nozzles was varied in order to find more efficient ALD reactors. The efficiency of the reference geometry is limited by the inlet nozzles close to the exhaust and the decrease of the pressure on the substrate near the exhaust. The efficiency of ALD processes with different SCs was simulated for planar and structured substrates with a diameter of 300 mm and 450 mm.:Inhaltsverzeichnis................................................................................ i Tabellenverzeichnis.............................................................................. iii Abbildungsverzeichnis ......................................................................... v Abkürzungsverzeichnis ........................................................................ ix Formelverzeichnis ................................................................................ xi 1. Einführung ....................................................................................... 1 1.1. Motivation und Zielstellung ........................................................... 1 1.2. Grundlagen der Atomlagenabscheidung ....................................... 3 1.3. Materialien und Anwendungen ..................................................... 6 2. Experimentelle Grundlagen .............................................................. 9 2.1. ALD-Anlage ................................................................................... 9 2.2. Physikalische Probencharakterisierung ........................................ 11 2.2.1. Röntgenmethoden ..................................................................... 11 2.2.2. Elektronenstrahl-Methoden ....................................................... 12 2.2.3. Spektrometrische Methoden ...................................................... 13 2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14 3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21 3.1. Abscheidung von Titandioxid ........................................................ 21 3.1.1. TDMAT als Titanpräkursor .......................................................... 21 3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25 3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30 3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32 3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32 3.3.2. TMA mit Ozon ............................................................................ 36 3.3.3. TEMAHf mit Ozon ....................................................................... 37 3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39 3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41 4. Modellierung der Adsorption ........................................................... 43 4.1. Adsorptionsverhalten planarer Substrate .................................... 43 4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49 4.2.1. Numerische Simulationsmethode .............................................. 52 4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54 4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55 4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59 4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61 4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66 4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74 4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78 4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79 4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81 5. Gekoppelte Prozesssimulation ........................................................ 83 5.1. Statistische Methode zur Simulation der ALD ............................... 83 5.1.1. Statistische Größen der Gasdynamik ......................................... 85 5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90 5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93 5.2.1. Geometrie und Randbedingungen ............................................. 93 5.2.2. Ergebnis der Reaktorsimulation ................................................. 96 5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102 5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110 5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113 5.4. Vergleich zwischen Simulation und Experiment .......................... 114 6. Zusammenfassung und Ausblick .................................................... 117 Literaturverzeichnis ........................................................................... 121 Anhang .............................................................................................. 129 Parameter der modellierten effektiven Haftkoeffizienten ................... 129 Hafnium-Dotierung von Titandioxidschichten ..................................... 131 Eigene Veröffentlichungen ................................................................. 133 Lebenslauf ......................................................................................... 135
3

Coupling between stochastic particle transport models and topographic thin film growth

Gehre, Joshua 01 April 2022 (has links)
Manufacturing of electronics devices, continuously decreasing in size, commonly requires the vapor phase deposition of materials into small structures on a wafer, often at a nanometer scale. In this thesis the goal is to simulate vapor-phase deposition processes at a scale where fully atomistic simulations using Molecular Dynamics are no longer feasible. This is achieved by combing two methods, one simulating the gas flow and deposition processes and another method simulating the changing surface. A Particle Monte Carlo method, specifically designed for free molecular flow, the typical flow regime at this length scale, is used. The simulation of growing surfaces uses the Level Set Method. Combining these two methods requires some additional coupling steps presented in this work. With the coupled model, different deposition processes are simulated within trenches to observe how well these processes perform for achieving a uniform deposition, as well as evaluating different process conditions.:Table of Contents List of Figures List of Tables List of Abbreviations List of Symbols 1 Introduction 2 Basics 2.1 Surface deposition processes 2.1.1 Chemical Vapor Deposition 2.1.2 Atomic Layer Deposition 2.1.3 Physical Vapor Deposition 2.2 Simulation approaches for surface depositions 2.2.1 Modeling chemical reactions on a surface 2.2.2 Interaction tables for PVD 2.3 Flow regimes 2.4 Molecular Dynamics 2.5 Particle Monte Carlo 2.6 Marker Particle Method 2.7 Level Set Method 2.7.1 Re-initialization of the signed distance function 2.7.2 Extension Velocities 2.7.3 Fast Marching Method 2.7.4 Upwind scheme 2.7.5 Curvature 2.8 Marching-Squares/Cubes Algorithm 3 Methods and Implementation 3.1 Software 3.1.1 External libraries 3.1.2 Geosect 3.2 Initialization of the signed distance field 3.3 Coupling between particle simulations and Level Set 3.3.1 The simulation cycle 3.3.2 Conversion from a grid to a discrete mesh 3.3.3 Extension of growth rates from a mesh to a grid 3.4 Integrating the Level Set Equation 3.4.1 Splitting the number of particles between different steps 3.4.2 Re-initializing the signed distance function 3.4.3 Handling surface coverage 3.4.4 The full update of the surface 3.5 Curvature dependent reflow 3.6 Level Set for radial symmetry 4 Verification 4.1 Testing different integration schemes 4.1.1 Growth of a circle in a linear velocity field 4.1.2 PVD in trenches 4.2 Mass preservation during curvature dependent reflow 4.3 Comparisons between 2D, radial 2D and 3D 4.3.1 Comparing 2D and 3D 4.3.2 Comparing radial 2D and 3D 5 Process Simulations 5.1 Resputter process using a PVD 5.1.1 Simulations and their parameters 5.1.2 Surfaces after the deposition step 5.1.3 Surface growth in the resputter step 5.1.4 Conditions for improved layer thickness 5.2 CVD with an effective sticking coefficient 5.3 Incomplete ALD cycles 5.4 Deposition onto a complex 3D shape 6 Conclusion Bibliography Acknowledgment Statement of authorship
4

Ein Beitrag zum technologischen Konzept, zur Funktion und Berechnung hybrider Filterzyklone für die Partikelabscheidung aus Gasen

Emmrich, Jens 12 December 2014 (has links)
Die Partikelabscheidung aus Gasen findet bei einer Vielzahl industrieller Prozesse Anwendung. Die im Bereich der Emissionsminderung für die Abscheidung fester Partikel zumeist herkömmlich eingesetzten Anlagen gleichen einander stark und werden häufig auch als Entstaubungsanlagen oder -einrichtungen bezeichnet. Diese bestehen vorwiegend aus eckigen Gehäusen mit intern positionierten Filterelementen. Zum Schutz und zur Entlastung der Filterelemente finden häufig interne Prallbleche bzw. externe Fliehkraftabscheider Verwendung. Kaum bekannt und untersucht hingegen ist die Kombination von filternder Technologie mit Fliehkraftabscheidern innerhalb eines Gehäuses. Die vorliegende Arbeit untersucht das technologische Konzept kombinierter Bauformen und entwickelt zwei weitere Varianten. Die wissenschaftliche Untersuchung von deren Funktion erfolgt am eigens entwickelten Versuchsstand. Die zusätzliche experimentelle Analyse einer herkömmlichen Entstaubungseinrichtung ermöglicht die Gegenüberstellung der unterschiedlichen technologischen Konzepte. Überdies erfolgt die Entwicklung und Validierung eines numerischen Berechnungsmodells sowie der Vergleich mit verfügbaren Standard-Berechnungsmodellen. Ferner findet das validierte numerische Berechnungsmodell bei der strömungstechnischen Analyse der experimentell untersuchten kombinierten Bauformen Anwendung. Letztendlich erfolgt auf Grundlage der Untersuchungsergebnisse die Definition von Vor- und Nachteilen sowie potentieller Anwendungsgebiete. Darüber hinaus werden für die zukünftige Dimensionierung allgemeingültige Regeln und eine Berechnungsvorschrift abgeleitet. / Particle separation of gases has been applied to a variety of industrial processes. Conventional concepts for the separation of solid particles resemble each other and are often referred to as dust collectors. They mainly consist of square housings with internal filter elements. For the protection and relief of the filter elements one often uses internal baffles and external cyclones. However, very little is known and studied regarding the combination of filtering technology and centrifugal separators within the same housing. This dissertation examines the state of the art of combined designs and presents the development of two further variants. Their scientific investigation took place on an especially designed test rig. An additional experimental analysis of a conventional dust collector allows the comparison of the developed different technological concepts. Moreover, experiments were carried out in order to develop and validate a numerical simulation model and to allow a comparison with available standard computational models. Furthermore, the validated numerical model has been applied to the aerodynamic analysis of the experimentally investigated combined designs. Moreover, based on the derived results, advantages and disadvantages as well as potential areas of application were identified. Eventually, some universal rules and a calculation rule have been derived for future designs and lay outs.

Page generated in 0.1502 seconds