• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude quantitative TEM et STEM du mûrissement de nanoparticules de Pt et de semi-conducteur ferromagnétique Ge(Mn)

Prestat, Eric 12 July 2013 (has links) (PDF)
Dans ce travail, différent systèmes ont été étudiés par des méthodes de microscopie électronique en transmission (TEM) : nanoparticules (NPs) de Pt sur du carbone amorphe, boîtes quantiques (QDs) de Ge, l'incorporation du Mn dans les QDs de Ge and des nanocolonnes (NCs) GeMn dans une matrice de Ge pure ou de GeSn. Le mûrissement de NPs de Pt sur un film de carbone amorphe a été étudié par TEM haute résolution (HRTEM) après des recuits à des températures comprises entre 200 °C et 300 °C pour des durées allant jusqu'à 160 h. Une augmentation significative de la taille moyenne des particules est observé en augmentation la durée du recuit pour toutes les températures étudiées. Une expérience de recuit in-situ a révélée deux étapes de mûrissement. La première est dominée par le mûrissement de Smoluchowski tandis que la seconde est dominée par le mûrissement d'Oswald de surface. La dépendance de type Arrhenius du coefficient de transport de masse de surface donne une énergie d'activation de Ed = 0.84 ± 0.08 eV/atome pour la diffusion des atomes de Pt sur un substrat de carbone amorphe. Des méthodes de TEM avancée ont été utilisé pour déterminer directement des profiles de concentration à l'échelle atomique et grand champ de vue par corrélation de signaux de champ sombre annulaire à grand angle (HAADF) et de spectroscopie de perte d'énergie d'électron (EELS). Cette méthode a été appliquée à l'étude de la concentration de Ge à l'échelle atomique dans le system SiGe. Le profile de concentration le long de la direction de croissance est expliqué par la ségrégation de surface des atomes de Ge pendant la croissance avec un modèle d'échange à deux états. L'incorporation de Mn dans les boîtes de Ge a été effectuée par croissance par jets moléculaire (MBE) de GeMn. Des précipités de SiMn sont formés pour des températures de croissance de 380 °C. La diminution de la température de croissance à 220 °C permet de limiter la ségrégation latérale de Mn et d'incorporer le Mn dans les QDs de Ge. Les compositions chimiques absolues obtenues par STEM-EELS prouvent que la densité atomique totale dans les NCs de GeMn est presque deux fois supérieure par rapport à la matrice de Ge. Des études structurales par HRTEM montrent les NCs cristallines sont très désordonnées. Les observations expérimentales peuvent être modélisées par une structure de phase α modifié, si des variants sont introduits pour annuler des réflexions de Bragg et des atomes de Ge sont substitués par des atomes de Mn. Les propriétés structurales et magnétiques de films GeSnMn croît par MBE à basse température (LTMBE) ont été étudiées. De manière similaire aux films GeMn, les atomes de Mn diffusent pendant la croissance et s'agrègent pour former des NCs de quelques nanomètres de diamètre, alignées verticalement et riche en Mn. Les observations TEM en vue plane montrent clairement que l'incorporation de Sn n'est pas homogène avec des concentrations en Sn dans les NCs inférieures à la limite de détection de l'EELS. La matrice présente une solution solide tandis qu'une coquille riche en Sn est formée autour des NCs de GeMn. La magnétisation dans les couches de GeSnMn est plus élevée que dans celles de GeMn. L'augmentation du moment magnétique dans les couches de GeSnMn est probablement due à la modification de la structure électronique des atomes de Mn in the NCs par la coquille de Sn.
2

Étude quantitative TEM et STEM du mûrissement de nanoparticules de Pt et de semi-conducteur ferromagnétique Ge(Mn) / Quantitative TEM and STEM study of Pt-Nanoparticles Coarsening and Ge(Mn)-based Ferromagnetic Semiconductors

Prestat, Eric 12 July 2013 (has links)
Dans ce travail, différent systèmes ont été étudiés par des méthodes de microscopie électronique en transmission (TEM) : nanoparticules (NPs) de Pt sur du carbone amorphe, boîtes quantiques (QDs) de Ge, l'incorporation du Mn dans les QDs de Ge and des nanocolonnes (NCs) GeMn dans une matrice de Ge pure ou de GeSn. Le mûrissement de NPs de Pt sur un film de carbone amorphe a été étudié par TEM haute résolution (HRTEM) après des recuits à des températures comprises entre 200 °C et 300 °C pour des durées allant jusqu'à 160 h. Une augmentation significative de la taille moyenne des particules est observé en augmentation la durée du recuit pour toutes les températures étudiées. Une expérience de recuit in-situ a révélée deux étapes de mûrissement. La première est dominée par le mûrissement de Smoluchowski tandis que la seconde est dominée par le mûrissement d'Oswald de surface. La dépendance de type Arrhenius du coefficient de transport de masse de surface donne une énergie d'activation de Ed = 0.84 ± 0.08 eV/atome pour la diffusion des atomes de Pt sur un substrat de carbone amorphe. Des méthodes de TEM avancée ont été utilisé pour déterminer directement des profiles de concentration à l'échelle atomique et grand champ de vue par corrélation de signaux de champ sombre annulaire à grand angle (HAADF) et de spectroscopie de perte d'énergie d'électron (EELS). Cette méthode a été appliquée à l'étude de la concentration de Ge à l'échelle atomique dans le system SiGe. Le profile de concentration le long de la direction de croissance est expliqué par la ségrégation de surface des atomes de Ge pendant la croissance avec un modèle d'échange à deux états. L'incorporation de Mn dans les boîtes de Ge a été effectuée par croissance par jets moléculaire (MBE) de GeMn. Des précipités de SiMn sont formés pour des températures de croissance de 380 °C. La diminution de la température de croissance à 220 °C permet de limiter la ségrégation latérale de Mn et d'incorporer le Mn dans les QDs de Ge. Les compositions chimiques absolues obtenues par STEM-EELS prouvent que la densité atomique totale dans les NCs de GeMn est presque deux fois supérieure par rapport à la matrice de Ge. Des études structurales par HRTEM montrent les NCs cristallines sont très désordonnées. Les observations expérimentales peuvent être modélisées par une structure de phase α modifié, si des variants sont introduits pour annuler des réflexions de Bragg et des atomes de Ge sont substitués par des atomes de Mn. Les propriétés structurales et magnétiques de films GeSnMn croît par MBE à basse température (LTMBE) ont été étudiées. De manière similaire aux films GeMn, les atomes de Mn diffusent pendant la croissance et s'agrègent pour former des NCs de quelques nanomètres de diamètre, alignées verticalement et riche en Mn. Les observations TEM en vue plane montrent clairement que l'incorporation de Sn n'est pas homogène avec des concentrations en Sn dans les NCs inférieures à la limite de détection de l'EELS. La matrice présente une solution solide tandis qu'une coquille riche en Sn est formée autour des NCs de GeMn. La magnétisation dans les couches de GeSnMn est plus élevée que dans celles de GeMn. L'augmentation du moment magnétique dans les couches de GeSnMn est probablement due à la modification de la structure électronique des atomes de Mn in the NCs par la coquille de Sn. / In this work, different system have been studied using transmission electron microscopy (TEM) methods: Pt nanoparticles (NPs) on amorphous carbon, Ge quantum dots (QDs), Mn incorporation in Ge QDs and GeMn nanocolumns (NCs) embedded in Ge or GeSn matrix. The coarsening of Pt NPs on amorphous carbon film was studied by high resolution TEM (HRTEM) after annealing at temperatures between 200°C and 300°C for periods of up to 160 hours. A significant increase of the average particle size is observed with increasing annealing time for all investigated temperatures. An in-situ annealing experiment reveals two coarsening stages. The first coarsening stage is dominated by Smoluchowski ripening whereas the second coarsening stage is dominated by surface Ostwald ripening. The Arrhenius-type dependence of the derived surface mass-transport coefficients yields an activation energy Ed = 0.84 ± 0.08 eV/atom for the surface diffusion of Pt atoms on an amorphous carbon substrate. Advanced TEM methods have be used to obtain direct determination of composition profiles with atomic resolution and large field of view by correlation of high angle annular dark field (HAADF) and electron energy loss spectroscopy (EELS) signals. This method was used to obtain a direct and precise quantification of Ge concentration at the atomic level for the SiGe system. The Ge concentration profile along the growth direction was explained by Ge surface segregation during the growth with a two-state exchange model. The incorporation of Mn in Ge QDs have been performed by molecular beam epitaxy (MBE) growth of GeMn. At growth temperature of 380°C, SiMn precipitates are formed. Lowering the growth temperature at 220°C allows limiting the lateral segregation of Mn in Ge and incorporating Mn in Ge QDs. Absolute chemical composition by STEM-EELS evidenced that the total atomic density in Ge(Mn) NCs is almost two times higher than in the Ge matrix. Structural analysis by HRTEM shows that the crystalline NCs exhibit a high degree of disorder. Experimental observation can be model with a modified α-phase structure if variants are introduced to cancel reflexions and Ge atoms are substituted by Mn atoms. The structural and magnetic properties of GeSnMn films grown on Ge(001) by low temperature MBE (LTMBE) have been studied. Like in Ge(Mn) films, Mn atoms diffuse during the growth and aggregate into vertically aligned Mn-rich NCs of a few nanometers in diameter. TEM observations in plane view clearly indicate that the Sn incorporation is not uniform with concentration in Mn rich vertical NCs lower than the EELS detection limit. The matrix exhibits a GeSn solid solution while there is a Sn-rich GeSn shell around GeMn NCs. The magnetization in GeSnMn layers is higher than in GeMn films. This magnetic moment enhancement in GeSnMn is probably related to the modification of the electronic structure of Mn atoms in the NCs by the Sn-rich shell, which is formed around the NCs.
3

Étude des propriétés ferromagnétiques de structures à base de Ga1-xMnxAs dédiées à l'électronique de spin / Ferromagnetic properties study of structure based on Ga1-xMnxAs for spintronic devices

Kamara, Souleymane 10 December 2010 (has links)
À la fois semi-conducteur et ferromagnétique, le Ga1-xMnxAs offre des potentialités intéressantes pour l'électronique de spin. Cette double propriété est due à l'interaction d'échange entre les spins localisés des atomes de manganèse Mn et les spins des porteurs de charge. Le travail présenté dans cette thèse est centré sur le contrôle de l'aimantation de ces structures magnétiques. Une étude expérimentale, comparative et détaillée, de l'anisotropie magnétique a été menée sur deux séries d'échantillons. Par ailleurs, une méthode d'analyse basée sur l'étude de la densité d'énergie libre magnétocristalline des systèmes observés a été développée en vue de confronter les résultats aux prédictions théoriques. Les mesures d'effet Hall et d'aimantation par SQUID sur des monocouches à aimantation planaire ont permis de mettre en évidence deux types d'anisotropie : une anisotropie cubique pour T < TC/2 avec un retournement d'aimantation par sauts de 90°, et une anisotropie uniaxiale pour des températures TC/2 < T < TC avec un renversement d'aimantation à 180°. La technique du recuit post-croissance réduit cependant l'anisotropie cubique au profit de l'anisotropie uniaxiale. Les structures à aimantation perpendiculaire présentent, quant à elles, un retournement d'aimantation à 180° pour toutes les températures T < TC. Par conséquent, dans ces dispositifs, l'anisotropie magnétique est fortement uniaxiale. En dernier lieu, cette étude porte sur la dynamique des domaines magnétiques et la détermination des vitesses de propagation de parois de domaines, induites par un champ magnétique. Les résultats révèlent une anisotropie de propagation de parois suivant les axes cristallographiques <110> avec deux régimes de vitesses distincts, dont l'un est fortement contrôlé par des défauts de structure. / At the same time semiconductor and ferromagnetic, the Ga1-xMnxAs offers interesting potentialities for spintronic. This double property is due to the exchange interaction between localized spin of Mn atoms and the spin charge carrier. The work presented in this thesis is centred on the magnetization control of these magnetic structures. A comparative and detailed experimental study of the magnetic anisotropy is carried out on two series of samples. An analysis method based on the free energy density study of the observed systems was also been developed to confront the results with theoretical predictions. The Hall effect and SQUID measurements on the structures with planar magnetization allowed us to bring to light two types of anisotropy: a cubic anisotropy for T < TC / 2 with a magnetization reversal by jumps of 90 ° and an uniaxial anisotropy for temperatures TC / 2 < T < TC with a reversal of magnetization in 180°. The structure with perpendicular magnetization present a magnetization switch at 180° for all temperatures T < TC. Consequently in these compounds, the magnetic anisotropy is strongly uniaxiale. Lastly this study deals the magnetic domains structures and the determination of domain wall propagation velocity. The results reveal an anisotropic domain wall propagation along crystallographic axes <110> with two distinct velocity regimes, including one strongly controlled by structural defects.
4

Synthèse par épitaxie et propriétés magnétiques des semiconducteurs ferromagnétiques dilués à base de GeMn

Le thi, Giang 13 June 2012 (has links)
Le développement des dispositifs issus de l'électronique de spin nécessite de nouveaux matériaux qui permettent d'injecter de manière efficace le courant polarisé en spin dans des semiconducteurs. Parmi de nombreux matériaux utilisés comme injecteurs de spin, les semiconducteurs ferromagnétiques dilués (DMS), obtenus en dopant des semiconducteurs avec des impuretés magnétiques tels que Mn ou Co, sont considérés comme des candidats potentiels pour l'injection de spin. Ces matériaux dopés deviennent ferromagnétiques tout en conservant leurs propriétés semiconductrices. Par conséquent, ils présentent une similarité d'impédance électrique par rapport aux substrats semiconducteurs, ce qui rend efficace l'injection de courant polarisé en spin dans ces derniers. Dans ce contexte, l'objectif principal de cette thèse consiste à étudier la cinétique de croissance des semiconducteurs ferromagnétiques dilués GeMn. Nous cherchons à déterminer les paramètres clés de la croissance des couches de GeMn, à savoir la température du substrat, et la concentration en Mn. Pour la fabrication de dispositifs électroniques fonctionnels, le challenge crucial est d'obtenir des DMS ayant une température de Curie (TC) bien supérieure à la température ambiante. Nous nous sommes donc concentrés sur la cinétique de formation de la phase nanocolonnaire GeMn possédant une TC au-delà de 400 K. / The development of active spintronic devices requires new materials, which enable to efficiently inject spin-polarized currents into non-magnetic semiconductors. Among numerous materials that can be used as spin injectors, diluted magnetic semiconductors (DMS), obtained by doping standard semiconductors with magnetic impurities, such as Mn or Co, have emerged as potential candidates for spin injection. The materials become ferromagnetic while conserving their semiconducting properties. They exhibit therefore natural impedance match to host semiconductors and are expected to efficiently inject spin-polarized currents into semiconductors. In this context, the main objectives of this thesis work consist in studying the growth kinetics of GeMn-based diluted magnetic semiconductors. We aim at determining the main growth parameters, such as the substrate temperature and the Mn concentration, that govern the growth process of GeMn layers. Since for device applications it is crucial to obtain DMS exhibiting a Curie temperature (TC) well above room temperature, we have focused our attention to the kinetic formation of the GeMn nanocolumn phase, which exhibits a Curie temperature higher than 400 K.
5

Transport polarisé en spin dans des nanostructures semiconductrices

Mattana, Richard 29 October 2003 (has links) (PDF)
Cette thèse s'inscrit dans la thématique de l'électronique de spin à base de semiconducteurs. L'intégration de matériaux magnétiques dans des structures semiconductrices représentent actuellement un axe de recherche en plein essor qui amènera probablement une nouvelle génération de composants électroniques où seront associés deux degrés de liberté : la charge et le spin des porteurs. La finalité de ce travail est la détection électrique d'une injection de spins dans un puits de GaAs. Pour cela nous avons préalablement étudié des couches minces du semiconducteur ferromagnétique GaAs substitué Mn et des jonctions tunnel magnétiques GaMnAs/AlAs/GaMnAs. L'étude des couches minces de GaMnAs a permis de mettre en évidence la corrélation entre les propriétés magnétiques et électroniques et les jonctions tunnel ont permis de quantifier la polarisation en spin des porteurs du GaMnAs. Nous avons ensuite élaboré des structures où deux électrodes de GaMnAs sont séparées par un puits quantique AlAs/GaAs/AlAs. La première électrode permet de polariser les porteurs et la seconde d'analyser le courant polarisé en spin injecté dans le puits. La magnétorésistance (MR) dans ces structures est attribuée à un transport tunnel séquentiel avec accumulation de spins dans le puits de GaAs. La forte MR obtenue (40%) est la signature de la conservation du spin dans le puits et traduit ainsi que le temps de vie du spin des trous est supérieur au temps de séjour des trous dans ce puits. Les études de la MR en fonction de ces deux temps caractéristiques ont permis d'établir les conditions nécessaires afin de détecter une injection de spins dans un puits quantique semiconducteur. Ces expériences entièrement électriques nous ont aussi permis d'estimer le temps de vie du spin des trous dans ces puits de GaAs à la centaine de picosecondes à 4.2K.

Page generated in 0.1227 seconds