Return to search

Growth and physical study of ZnO:Co DMO thin films

Co-doped ZnO (ZnO:Co) thin film with room temperature ferromagnetism and spin polarized carriers is one of the advance materials and highly applicable in future development in spintronics. When ZnO:Co films deposited by a £_ growth method in a ion sputtering system, low solubility of Co (3.75%) limits further applications such that a single-guns sputtering thin film growth technique is employed in this study to outreach this limitation. A ZnO:Co bulk with 5 at% of Co was formed by a solid reaction method and used as a target. ZnO:Co films were grown in a single-gun RF sputtering system. However, all films grown at room temperature were insulator which might because sufficient oxygen content in the target and the negative charge of oxygen ion moving toward substrate making the films of full oxygen content. In this study, the post annealing in vacuum environment and the deposition of films in hydrogenation environment are conducted to try to produce various level of oxygen vacancies in the films for understanding the interplay between the oxygen vacancies and the electric transport and magnetic coupling. The present experiment contains two parts: (1) grow films with various thicknesses by controlling deposition time and then applying post annealing process, and (2) grow the films in oxygen reduced environment by introducing hydrogen during growth and taking out partial oxygen content in the plasma and the films. In the first part, the grain sizes of the films are near constant while the crystal quality is improved with the thickness of films. The worse crystal quality of grains, the better the electric transport and the stronger the magnetic coupling after post annealing processes. This indicates that the electric transport and magnetic coupling could be improved when the thin films was formed by crystals with certain disordering and contained a certain level of oxygen vacancies. In the second part, the introduced hydrogen may combine with the oxygen sputtered out from the target before deposition on substrates. It means that the films are grown in oxygen deficient conditions and result in various degrees of oxygen vacancies. Zn clusters precipitate in films when the concentration of hydrogen is over 20%, and at the meantime, they increase the conductivity and suppress the magnetic coupling in the films. These discoveries provide new perspective in understand the electric transport and ferromagnetism mechanics in DMS materials.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0830110-155829
Date30 August 2010
CreatorsTsao, Yao-chung
ContributorsJau-Wern Chiou, Shih-Jye Sun, Ying-Chung Chen, Hsiung Chou
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0830110-155829
Rightswithheld, Copyright information available at source archive

Page generated in 0.0021 seconds