Return to search

Algorithms for Molecular Dynamics Simulations

<p>Methods for performing large-scale parallel Molecular Dynamics(MD) simulations are investigated. A perspective on the field of parallel MD simulations is given. Hardware and software aspects are characterized and the interplay between the two is briefly discussed. </p><p>A method for performing <i>ab initio </i>MD is described; the method essentially recomputes the interaction potential at each time-step. It has been tested on a system of liquid water by comparing results with other simulation methods and experimental results. Different strategies for parallelization are explored.</p><p>Furthermore, data-parallel methods for short-range and long-range interactions on massively parallel platforms are described and compared. </p><p>Next, a method for treating electrostatic interactions in MD simulations is developed. It combines the traditional Ewald summation technique with the nonuniform Fast Fourier transform---ENUF for short. The method scales as <i>N log N</i>, where <i>N </i>is the number of charges in the system. ENUF has a behavior very similar to Ewald summation and can be easily and efficiently implemented in existing simulation programs.</p><p>Finally, an outlook is given and some directions for further developments are suggested.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-1008
Date January 2006
CreatorsHedman, Fredrik
PublisherStockholm University, Department of Physical, Inorganic and Structural Chemistry, Stockholm : Institutionen för fysikalisk kemi, oorganisk kemi och strukturkemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text

Page generated in 0.0028 seconds