With the rise of information technology and the dependence on these systems, it becomes increasingly more important to keep the systems secure. The possibility to detect an intrusion with intrusion detection systems (IDS) is one of multiple fundamental technologies that may increase the security of a system. One of the bigger challenges of an IDS, is to detect types of intrusions that have previously not been encountered, so called unknown intrusions. These types of intrusions are generally detected by using methods collectively called anomaly detection methods. In this thesis I evaluate the performance of the algorithm Tree Augmented Naive Bayes Classifier (TAN) as an intrusion detection classifier. More specifically, I created a TAN program from scratch in Python and tested the program on two data sets containing data traffic. The thesis aims to create a better understanding of how TAN works and evaluate if it is a reasonable algorithm for intrusion detection. The results show that TAN is able to perform at an acceptable level with a reasonably high accuracy. The results also highlights the importance of using the smoothing operator included in the standard version of TAN. / Med informationsteknikens utveckling och det ökade beroendet av dessa system, blir det alltmer viktigt att hålla systemen säkra. Intrångsdetektionssystem (IDS) är en av många fundamentala teknologier som kan öka säkerheten i ett system. En av de större utmaningarna inom IDS, är att upptäcka typer av intrång som tidigare inte stötts på, så kallade okända intrång. Dessa intrång upptäcks oftast med hjälp av metoder som kollektivt kallas för avvikelsedetektionsmetoder. I denna uppsats utvärderar jag algoritmen Tree Augmented Naive Bayes Classifiers (TAN) prestation som en intrångsdetektionsklassificerare. Jag programmerade ett TAN-program, i Python, och testade detta program på två dataset som innehöll datatrafik. Denna uppsats ämnar att skapa en bättre förståelse för hur TAN fungerar, samt utvärdera om det är en lämplig algoritm för detektion av intrång. Resultaten visar att TAN kan prestera på en acceptabel nivå, med rimligt hög noggrannhet. Resultaten markerar även betydelsen av "smoothing operator", som inkluderas i standardversionen av TAN.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-295754 |
Date | January 2021 |
Creators | Wester, Philip |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:133 |
Page generated in 0.002 seconds