Return to search

How can Ecosystem Services be implemented in local Climate Adaptation? : A case study of Arjeplog

Ecosystem services are essential for human climate adaptation. As climate change is a direct driver of change for ecosystem service provisioning, it is of importance to care for our ecosystems to be able to cope with future challenges. Local governance has a central role in climate adaptation due to its responsibility in physical planning. To be able to plan for changes driven by climate change, a flexible, adaptive strategy is necessary. Ecosystem-based Adaptation, EbA, can provide this flexibility to an overall adaptation strategy. In this case study, the potential of EbA to help Nature-based Tourism, NbT, to adapt to a changing climate was spatially mapped to be a useful part of the basis for local physical planning. The mapping includes areas of biodiversity, water infrastructure and features that provide resilience to climate change. The results show that there are areas with potential for EbA that can address adverse effects of climate change for the NbT. These spatial mapped areas provide an instant overview of the key areas to consider when planning for climate adaptation. These mapped areas are also combined with a qualitative assessment of the potential for EbA. By providing decision-makers with information on where and how ecosystem services can assist local climate adaptation, decisions that support both the future of humanity and ecosystems are enabled. However, to reach enforcement of EbA, the knowledge has to be included in binding documents such as detail plans.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-36856
Date January 2019
CreatorsBoltemo Edholm, Jenny
PublisherMittuniversitetet, Institutionen för ekoteknik- och hållbart byggande
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds