Return to search

On the Development of Mucin-based Biomaterial Coatings

Owing to their key role in mucosal functioning as surface barriers with biospecific interaction potentials, the mucins are interesting candidates for use as surface modifiers in biomaterials applications. In this work, “mild” fractionation procedures were used to prepare mucins of bovine (BSM), porcine (PGM), and human (MG1) origin. Biophysicochemical analysis showed the prepared mucins to differ in size, charge, conformation, and composition. In turn, these factors were shown to govern mucin adsorption on hydrophilic and hydrophobic model surfaces. To enable for detailed coating analysis, methods for the qualitative and quantitative analysis of mucin-based coatings were developed. Of particular interest, a method for the determination of the fraction of surface-exposed, presumed bioactive proteins in a complex mucin coating was described. It was shown, using microscopy and activation assays, that mucin precoating effectively suppresses the neutrophil response towards a polymeric model biomaterial. Under optimal coating conditions, all mucins performed equally well, thus indicating them to be functionally similar. Coating analysis suggested that efficient mucin surface-shielding is critical for good mucin coating performance. Following a study on the complexation of albumin with preadsorbed mucin, we investigated the effect of mucin precoating on the conformation and neutrophil-activating properties of adsorbed host proteins. We found that mucin precoating greatly reduces the strong immune-response normally caused by adsorbed proinflammatory proteins (IgG and sIgA). Detailed coating analysis revealed that the fraction of surface-exposed protein in the mucin-protein composite influences the neutrophil response. Unexpectedly low neutrophil activation for composites containing near-monolayer concentrations of exposed IgG, suggested IgG to act synergistically with mucin on the surface. Conformational analysis supported this by showing that a preadsorbed mucin layer could stabilize adsorbed IgG through complexation. Our findings link well to the complex in vivo situation and suggest that functional mucosal mimics can be created in situ for improved biomaterials performance.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-9439
Date January 2008
CreatorsSandberg, Tomas
PublisherUppsala universitet, Institutionen för fysikalisk och analytisk kemi, Uppsala : Universitetsbiblioteket
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 583

Page generated in 0.002 seconds