Return to search

Chemical and Photolytic Degradation of Polyacrylamides Used in Potable Water Treatment

Polyacrylamides (PAMs) are a class of polymers formed from acrylamide alone or copolymerized with other monomers. PAMs have been used in drinking water treatment as flocculants or coagulants in the highest volume among all the polymer types. In potable water treatment processes, polyacrylamides are often exposed to oxidants (e.g. chlorine and permanganate) and UV irradiation from sunlight or artificial sources. The purpose of this study is to evaluate the possible degradation of PAMs caused by chemical oxidation and/or UV irradiation.
Three types of PAM products (nonionic, cationic and anionic) were studied under free chlorine and permanganate oxidation, UV irradiation, and their combined effects. It has been found that the cationic PAM was the most unstable polymer among the three types of polymer sample studies, however, only partial degradation was observed. Acrylamide residual in the cationic PAM C-3280 was higher than the U.S. guideline value, and exposure to either chlorine or permanganate resulted in decline of acrylamide level to some extent. UV irradiation did not cause reduction of total polymer contents and acrylamide residuals, but did accelerate chemically induced degradation.
Exposure to chlorine or permanganate for one hour resulted in about 20-35% loss in flocculation performance for each polymer sample. Short time exposure (5 minutes) did not result in loss of flocculation performance for the nonionic and anionic PAMs. However, for the cationic PAM, even short time exposure to chlorine led to loss of flocculation performance of 25-35 %, which indicated that the cationic PAM was more susceptible to oxidation.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-1992
Date12 November 2004
CreatorsCheng, Peiyao
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0026 seconds