Return to search

Engineering analysis of low enriched uranium fuel using improved zirconium hydride cross sections

A neutronic and thermal hydraulic analysis of the 1-MW TRIGA research reactor
at the Texas A&M University Nuclear Science Center using a new low enriched uranium
fuel (named 30/20 fuel) was completed. This analysis provides safety assessment for the
change out of the existing high enriched uranium fuel to this high-burnup, low enriched
uranium fuel design. The codes MCNP and Monteburns were utilized for the neutronic
analysis while the code PARET was used to determine fuel and cladding temperatures.
All of these simulations used improved zirconium hydride cross sections that were
provided by Dr. Ayman Hawari at North Carolina State University. The neutronic and
thermal analysis showed that the reactor will operate with approximately the same fuel
lifetime as the current high enriched uranium fuel and stay within the thermal and safety
limits for the facility. It was also determined that the control rod worths and the
temperature coefficient of reactivity would provide sufficient negative reactivity to
control the reactor during the fuel’s complete lifetime.
An assessment of the fuel’s viability for use with the Advanced Fuel Cycle
Initiative’s Reactor Accelerator Coupling Experiments program was also performed.
The objective of this study was to confirm the continued viability of these experiments with the reactor operating using this new fuel. For these experiments, the accelerator
driven system must produce fission heating in excess of 1 kW when driven by a 20 kW
accelerator system. This criterion was met using the new fuel. Therefore the change out
of the fuel will not affect the viability of these experiments.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/4347
Date30 October 2006
CreatorsCandalino, Robert Wilcox
ContributorsCharlton, William
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Format1578971 bytes, electronic, application/pdf, born digital

Page generated in 0.0078 seconds