Return to search

Multi-band OFDM UWB receiver with narrowband interference suppression

A multi band orthogonal frequency division multiplexing (MB-OFDM) compatible
ultra wideband (UWB) receiver with narrowband interference (NBI) suppression
capability is presented. The average transmit power of UWB system is limited to
-41.3 dBm/MHz in order to not interfere existing narrowband systems. Moreover, it
must operate even in the presence of unintentional radiation of FCC Class-B compatible
devices. If this unintentional radiation resides in the UWB band, it can jam the
communication. Since removing the interference in digital domain requires higher dynamic
range of analog front-end than removing it in analog domain, a programmable
analog notch filter is used to relax the receiver requirements in the presence of NBI.
The baseband filter is placed before the variable gain amplifier (VGA) in order to reduce
the signal swing at the VGA input. The frequency hopping period of MB-OFDM
puts a lower limit on the settling time of the filter, which is inverse proportional to
notch bandwidth. However, notch bandwidth should be low enough not to attenuate
the adjacent OFDM tones. Since these requirements are contradictory, optimization
is needed to maximize overall performance. Two different NBI suppression schemes
are tested. In the first scheme, the notch filter is operating for all sub-bands. In the
second scheme, the notch filter is turned on during the sub-band affected by NBI.
Simulation results indicate that the UWB system with the first and the second suppression
schemes can handle up to 6 dB and 14 dB more NBI power, respectively. The results of this work are not limited to MB-OFDM UWB system, and can be
applied to other frequency hopping systems.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2498
Date15 May 2009
CreatorsKelleci, Burak
ContributorsKarsilayan, Aydin Ilker
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0021 seconds