Méthodologie de caractérisation microstructurale 3D de matériaux poreux structurés pour la thermique / Methodology of 3D microstructural characterization of porous materials structured for thermal insulation

Depuis 30 ans, les exigences règlementaires en matière d’isolation thermique des bâtiments augmentent sans cesse. Pour mieux isoler, et conserver la surface habitable et la valeur patrimoniale, il est nécessaire d’augmenter les performances des isolants thermiques. Si les meilleurs systèmes classiques d’isolant atteignent désormais des conductivités thermiques proches de 30 mW/(m.K), les matériaux supers isolants à pression atmosphérique affichent moins de 18 mW/(m.K) et sont à base d’aérogels de silice. Cette matière première doit ses excellentes performances thermiques, à d’une part la taille de ces nanopores inférieure à 70nm, et d’autre part leur très forte quantité. Ceci induit par contre de très faibles propriétés mécaniques, les systèmes super isolants formulés avec des aérogels sont donc toujours des composites : empilement granulaire faiblement lianté. Pour développer l’optimisation de ces formulations, il est nécessaire de disposer d’outils de caractérisation microstructurales multiéchelles dédiés aux aérogels et au suivi pas à pas des étapes d’élaboration post synthèse. Ce travail de thèse a pour objectif de les mettre en place et de les valider. Les matériaux supports de cette thèse, sont des aérogels de silice hydrophobes granulaires et deux formulations liantées en phase aqueuse. Ces formulations architecturées, par une faible fraction volumique de liant organique de taille nanométrique, se distinguent par la taille et le type de surfactant employé, et les performances tant thermiques que mécaniques obtenues. Tout d’abord, le réseau poreux de silice à l’échelle nanométrique a été imagé et caractérisé par tomographie électronique. Cette partie vise à fournir une distribution en taille de pores, particules et agrégats, destinée à alimenter des modèles thermo-mécaniques. Dans un second temps, l’empilement granulaire des aérogels non liantés a été étudié par tomographie aux rayons X. Les résultats de compacité, les morphologies des réseaux de pores, et de grains ont été couplés aux mesures de masse volumique et de porosité inter-granulaire afin de dégager un lien entre microstructure de l’empilement granulaire et conductivité thermique mesurée. Enfin, les interactions aérogels de silice/liant sont imagées en utilisant l’ESEM wet-stem. Une méthodologie quantitative permet ensuite de s’assurer que le surfactant employé induit bien d’une part une dispersion homogène des aérogels, et d’autre part un réseau texturé de liant. Pour conclure, les propriétés thermiques et mécaniques sont mesurées sur les composites référence et des composites innovants avec une étude détaillée des microstructures formées en synergie. Des pistes d’optimisation matériau par opacification intra-granulaire des aérogels sont proposées, un nouveau surfactant est infirmé. Les outils développés valident ainsi leur pertinence pour assurer la qualification des futures formulations de matériaux super isolants. / The national objectives on the reduction of the rejections of greenhouse gases bring to the necessity of a thermal renovation for 75 % of the French buildings. As the requirements for old and new buildings increase their standards, design thinner and more efficient insulation materials is of great and increasing interest. New insulating materials with thermal conductivities lower than the still dry air (25 mW / (m. K)), such as based silica xerogel products (15 mW / ( m.K )), recently developed, are an interesting choice to answer those new fonctionnalities. In our study, silica xerogels (porosity > 80 %, specific surface > 600 m ²/g) are available as granular materials and binded stiff composite boards (xerogels / latex). The optimization of these materials requires to understand the link between their microstructure, their thermal conductivity and their mechanical behaviour.

Identiferoai:union.ndltd.org:theses.fr/2015ISAL0042
Date13 May 2015
CreatorsPerret, Anouk
ContributorsLyon, INSA, Foray, Geneviève, Maire, Eric
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds