• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

FeCr composites : from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process / FeCr composites : à partir de composites métaux/métaux jusqu'au composites métaux/polymers via des micro/nano poreux métalliques, exploitation du principe de désalliage dans un bain de métal liquide

Mokhtari, Morgane 15 November 2018 (has links)
Les métaux micro ou nanoporeux sont très attrayants notamment pour leur grande surface spécifique. Le désalliage dans un bain de métal liquide permet une dissolution sélective d'une espèce chimique (l'élément soluble) à partir d'un alliage d'origine (le précurseur) composé de l'élément soluble et d'un élément cible (qui deviendra nano/micro poreux) non soluble dans le bain de métal liquide. Quand le précurseur est plongé dans le bain de métal liquide, à son contact, l'élément soluble va se dissoudre dans le bain tandis que l'élément cible va en parallèle se réorganiser spontanément afin de former une structure poreuse. Quand l'échantillon est retiré du bain, il est sous la forme d'une structure bi-continue composée de deux phases : l'une étant la structure poreuse composée de l'élément cible et l'autre est une phase dans laquelle est présente l'élément du bain avec l'élément sacrificiel en solution solide. Cette phase peut être dissoute par une attaque chimique afin d’obtenir le métal nano/micro poreux. Les objectifs principaux de cette thèse sont l'élaboration et la caractérisation microstructurale et mécanique de 3 différents types de matériaux par désalliage dans un bain de métal liquide : des composites métal-métal (FeCr-Mg), des métaux poreux (FeCr) et des composites métal-polymère (FeCr-matrice époxy). Le dernier objectif est l'évaluation des possibilités d'utiliser la technique de désalliage dans un bain de métal liquide dans un contexte industriel. L'étude de la microstructure est basée sur des observations 3D faites par tomographie aux rayons X et des analyses 2D réalisées en microscopie électronique (SEM, EDX, EBSD). Pour mieux comprendre le désalliage, le procédé a été suivi in situ en tomographie aux rayons X et diffraction. Enfin, les propriétés mécaniques ont été évaluées par nanoindentation et compression. / Nanoporous metals have attracted considerable attention for their excellent functional properties. The first developed technique used to prepare such nanoporous noble metals is dealloying in aqueous solution. Porous structures with less noble metals such as Ti or Fe are highly desired for various applications including energy-harvesting devices. The less noble metals, unstable in aqueous solution, are oxidized immediately when they contact water at a given potential so aqueous dealloying is only possible for noble metals. To overcome this limitation, a new dealloying method using a metallic melt instead of aqueous solution was developed. Liquid metal dealloying is a selective dissolution phenomenon of a mono-phase alloy solid precursor: one component (referred as soluble component) being soluble in the metallic melt while the other (referred as targeted component) is not. When the solid precursor contacts the metallic melt, only atoms of the soluble component dissolve into the melt inducing a spontaneously organized bi-continuous structure (targeted+sacrificial phases), at a microstructure level. This sacrificial phase can finally be removed by chemical etching to obtain the final nanoporous materials. Because this is a water-free process, it has enabled the preparation of nanoporous structures in less noble metals such as Ti, Si, Fe, Nb, Co and Cr. The objectives of this study are the fabrication and the microstructure and mechanical characterization of 3 different types of materials by dealloying process : (i) metal/metal composites (FeCr-Mg), (ii) porous metal (FeCr) (iii) metal/polymer composites (FeCr-epoxy resin). The last objective is the evaluation of the possibilities to apply liquid metal dealloying in an industrial context. The microstructure study was based on 3D observation by X-ray tomography and 2D analysis with electron microscopy (SEM, SEM-EDX, SEM-EBSD). To have a better understanding of the dealloying, the process was followed in situ by X-ray tomography and X-ray diffraction. Finally the mechanical properties were evaluated by nanoindentation and compression.
2

The role of the microstructure in granular material instability / Le rôle de la microstructure dans l'instabilité de matériaux granulaires

Nguyen, Nho Gia Hien 24 June 2016 (has links)
Les matériaux granulaires se composent de grains solides et d’un constituant remplissant les pores, tel qu'un fluide ou une matrice solide. Les grains interagissent au travers de répulsions élastiques, auxquelles s’ajoutent des mécanismes de friction, d’adhérence et d'autres forces surfaciques. La sollicitation externe conduit à la déformation des grains ainsi qu’à des réarrangements de particules. Les déformations des milieux granulaires sont d'une importance capitale dans de nombreuses applications industrielles et dans la recherche, comme par exemple dans la métallurgie des poutres ou en mécanique des sols. La réponse des matériaux granulaires sous chargement externe est complexe, en particulier lorsqu’une rupture se produit: le mode de rupture peut être diffus ou localisé, et l’aspect de peut varier drastiquement lorsque celui-ci ne peut plus soutenir la charge externe. Dans le cadre de cette thèse, une analyse numérique basée sur une méthode des éléments discrets est réalisée pour étudier les comportements macroscopique et microscopique des matériaux granulaires à la rupture. Ces simulations numériques prennent en compte le critère du travail du second ordre afin de prédire la rupture. De plus il est montré que l’annulation du travail du second ordre coïncide avec la transition d’un régime statique vers un régime dynamique. Ensuite, le comportement matériaux granulaires est analysé à l’échelle micro-structurelle. L’évolution des chaines des forces et des cycles des grains est étudiée durant le processus de déformation jusqu’à la rupture. Le travail du second ordre est également pris en compte pour examiner l'aspect local qui régit la rupture à l’échelle locale. L'effondrement de l'échantillon discret quand il passe du régime quasi-statique vers le régime dynamique est accompagné d'une bouffée d'énergie cinétique. Cette augmentation de l'énergie cinétique est générée lorsque la contrainte interne ne permet pas d'équilibrer la force externe sous l’action d’une petite perturbation, ce qui entraîne une différence entre les travaux du second ordre interne et externe du système. Les mésostructures démontrent une relation symbiotique entre elles, et leur évolution gouverne le comportement macroscopique du système discret. La distribution de l'effondrement des chaînes de forces est parfaitement corrélée avec l’annulation du travail du second ordre à l'échelle de particules. Les mésostructures jouent un rôle important dans l'instabilité des milieux granulaires. Le travail du second ordre peut être utilisé comme un critère pertinent et robuste pour détecter l'instabilité du système que ce soit à l'échelle macroscopique ou microscopique (échelle de particule) / Granular materials consist of dense pack of solid grains and a pore-filling element such as a fluid or a solid matrix. The grains interact via elastic repulsion, friction, adhesion and other surface forces. External loading leads to grain deformations as well as cooperative particle rearrangements. The particle deformations are of particular importance in many industry applications and research subjects, such as powder metallurgy and soil mechanics. The response of granular materials to external loading is complex, especially in case when failure occurs: the mode of the failure can be diffuse or localized, and the development of specimen pattern can be drastically different when the specimen can no longer sustain external loading. In this thesis, a thorough numerical analysis based on a discrete element method is carried out to investigate the macroscopic and microscopic behavior of granular materials when a failure occurs. The numerical simulations include the vanishing of the second-order work instability criterion to detect failure. Furthermore, it is proved that the vanishing of second-order work coincides with the change from a quasi-static regime to a dynamic regime in the response of the specimen. Then, microstructure evolution is investigated. Evolution of force-chains and grain-loops are investigated during the deformation process until reaching the failure. The second-order work is once again taken into account to elucidate the local aspect that governs the failure, taking place at the particle scale. The collapse of the discrete specimen when it turns from quasi-static to dynamic regime is accompanied with a burst in kinetic energy. This rise of kinetic energy occurs when the internal stress cannot balance with the external loading when a small perturbation is added to the boundary, resulting in a difference between the internal and external second-order works of the system. The mesostructures have a symbiosis relationship with each other and their evolution decides the macroscopic behavior of the discrete system. The distribution of the collapse of force-chain correlates with the vanishing of the second-order work at the grain scale. The mesostructures play an important role in the instability of granular media. The second-order work can be used as an effective criterion to detect the instability of the system on both the macroscale and microscale (grain scale)
3

Méthodologie de caractérisation microstructurale 3D de matériaux poreux structurés pour la thermique / Methodology of 3D microstructural characterization of porous materials structured for thermal insulation

Perret, Anouk 13 May 2015 (has links)
Depuis 30 ans, les exigences règlementaires en matière d’isolation thermique des bâtiments augmentent sans cesse. Pour mieux isoler, et conserver la surface habitable et la valeur patrimoniale, il est nécessaire d’augmenter les performances des isolants thermiques. Si les meilleurs systèmes classiques d’isolant atteignent désormais des conductivités thermiques proches de 30 mW/(m.K), les matériaux supers isolants à pression atmosphérique affichent moins de 18 mW/(m.K) et sont à base d’aérogels de silice. Cette matière première doit ses excellentes performances thermiques, à d’une part la taille de ces nanopores inférieure à 70nm, et d’autre part leur très forte quantité. Ceci induit par contre de très faibles propriétés mécaniques, les systèmes super isolants formulés avec des aérogels sont donc toujours des composites : empilement granulaire faiblement lianté. Pour développer l’optimisation de ces formulations, il est nécessaire de disposer d’outils de caractérisation microstructurales multiéchelles dédiés aux aérogels et au suivi pas à pas des étapes d’élaboration post synthèse. Ce travail de thèse a pour objectif de les mettre en place et de les valider. Les matériaux supports de cette thèse, sont des aérogels de silice hydrophobes granulaires et deux formulations liantées en phase aqueuse. Ces formulations architecturées, par une faible fraction volumique de liant organique de taille nanométrique, se distinguent par la taille et le type de surfactant employé, et les performances tant thermiques que mécaniques obtenues. Tout d’abord, le réseau poreux de silice à l’échelle nanométrique a été imagé et caractérisé par tomographie électronique. Cette partie vise à fournir une distribution en taille de pores, particules et agrégats, destinée à alimenter des modèles thermo-mécaniques. Dans un second temps, l’empilement granulaire des aérogels non liantés a été étudié par tomographie aux rayons X. Les résultats de compacité, les morphologies des réseaux de pores, et de grains ont été couplés aux mesures de masse volumique et de porosité inter-granulaire afin de dégager un lien entre microstructure de l’empilement granulaire et conductivité thermique mesurée. Enfin, les interactions aérogels de silice/liant sont imagées en utilisant l’ESEM wet-stem. Une méthodologie quantitative permet ensuite de s’assurer que le surfactant employé induit bien d’une part une dispersion homogène des aérogels, et d’autre part un réseau texturé de liant. Pour conclure, les propriétés thermiques et mécaniques sont mesurées sur les composites référence et des composites innovants avec une étude détaillée des microstructures formées en synergie. Des pistes d’optimisation matériau par opacification intra-granulaire des aérogels sont proposées, un nouveau surfactant est infirmé. Les outils développés valident ainsi leur pertinence pour assurer la qualification des futures formulations de matériaux super isolants. / The national objectives on the reduction of the rejections of greenhouse gases bring to the necessity of a thermal renovation for 75 % of the French buildings. As the requirements for old and new buildings increase their standards, design thinner and more efficient insulation materials is of great and increasing interest. New insulating materials with thermal conductivities lower than the still dry air (25 mW / (m. K)), such as based silica xerogel products (15 mW / ( m.K )), recently developed, are an interesting choice to answer those new fonctionnalities. In our study, silica xerogels (porosity > 80 %, specific surface > 600 m ²/g) are available as granular materials and binded stiff composite boards (xerogels / latex). The optimization of these materials requires to understand the link between their microstructure, their thermal conductivity and their mechanical behaviour.
4

Etude des propriétés mécaniques de matériaux cellulaires par la tomographie aux rayons X et par modélisation par éléments finis / Study of mechanical properties of cellular materials by X-ray tomography and finite element modelling

Petit, Clémence 11 December 2015 (has links)
Les matériaux cellulaires sont des échantillons à très forte porosité qui peuvent être décrits à deux échelles : la mésostructure et la microstructure. Le lien entre l'architecture des matériaux et les propriétés mécaniques a été largement étudié dans la littérature. Les caractéristiques microstructurales peuvent avoir une influence importante sur les propriétés macroscopiques. Le but de ce travail est de relier les caractéristiques architecturales et microstructurales des matériaux cellulaires à leurs propriétés mécaniques grâce notamment à la tomographie aux rayons X. Une nouvelle approche combinant l'imagerie 3D à plusieurs résolutions, le traitement d'images et la modélisation éléments finis a permis de prendre en compte la microstructure de la phase solide. Quatre matériaux cellulaires modèles ont ainsi été étudiés : des mousses d'aluminium, des structures cellulaires périodiques en alliage de cobalt-chrome, des échantillons de β-TCP et des composites hydroxyapatite/β-TCP. Les matériaux métalliques ont été fournis par des collègues d'autres laboratoires, tandis que les matériaux céramiques ont été fabriqués dans le cadre de cette étude. Pour chaque type de matériaux (métaux et céramiques), une structure régulière et une stochastique ont été comparées. Pour utiliser la méthode multi-échelle développée dans ce travail, les échantillons ont d'abord été scannés grâce à la tomographie locale dans laquelle l'échantillon est placé près de la source de rayons X. La tomographie locale permet de scanner la petite partie irradiée de l'échantillon et d'obtenir une image agrandie par rapport aux images à plus basse résolution. Ces images permettent d'observer certains détails de la phase solide non visibles à plus basse résolution. Différentes étapes de traitement d'images ont ensuite été mises en œuvre pour obtenir une image à basse résolution incluant les informations provenant des images à haute résolution. Ceci a été réalisé grâce à une série d'opération de seuillage et sous-résolution des images à haute résolution. Le résultat de ces différentes étapes de traitement d'images donne une image de l'échantillon initial à basse résolution mais qui inclut l'information supplémentaire décelée à haute résolution. Ensuite, des essais mécaniques in situ ont été réalisés dans le tomographe pour suivre à basse résolution l'évolution des échantillons pendant la déformation. Les images initiales citées plus haut ont été utilisées pour produire des maillages éléments finis. Des programmes Java ont été adaptés pour créer des fichiers d'entrée pour les modèles éléments finis à partir des images initiales et des maillages. Les images initiales contenant les informations à propos de la phase solide, les images des essais mécaniques et les modèles éléments finis ont permis d'expliquer le comportement mécanique des échantillons en reliant les sites d'endommagement expérimentaux et les lieux de concentrations de contraintes calculés. / Cellular materials are highly porous systems for which two scales are mainly important: the mesostructure and the microstructure. The mesostructure corresponds to the architecture of the materials: distribution of solid phase “walls” and macroporosity and can be characterized by X-ray tomographic low resolution images. The link between the architecture of the materials and the mechanical properties has been frequently studied. The microstructure refers to the characteristics of the solid phase. Its microstructural features (presence of a secondary phase or of defects due to the sintering) can have a strong influence on the macroscopic properties. The aim of this work is to link the morphological and microstructural features of metallic and ceramic based cellular materials and their mechanical properties thanks to X-ray tomography and finite element modelling. A new method combining X-ray tomography at different resolutions, image processing and creation of finite element modelling enabled to take into account some microstuctural features of the cellular samples. Four different cellular materials were studied as model materials: aluminium foam fabricated by a liquid state process, cobalt periodic structures made by additive manufacturing, β-TCP porous samples fabricated by conventional sacrificial template processing route and hydroxyapatite/β-TCP composites made by additive manufacturing (robocasting). The metal based materials were provided by colleagues while the ceramic based porous materials were fabricated in the frame of the current study. For each type (metals or ceramics), a stochastic and a regular structure have been compared. For implementing the multiscale method developed in this work, the samples were firstly scanned in a so called “local” tomography mode, in which the specimen is placed close to the X-ray source. This allowed to reconstruct only the small irradiated part of the sample and to obtain a magnified image of a subregion. These images enable to observe some details which are not visible in lower resolution. Different image processing steps were performed to generate low resolution images including microstructural features imaged at high resolution. This was done by a series of thresholding and scaling of the high resolution images. The result of these processing steps was an image of the initial sample. Then, in situ mechanical tests were performed in the tomograph to follow the deformation of the sample at low resolution. The above mentioned initial images were used to produce finite element meshes. Special Java programs were adapted to create finite element input files from initial images and meshes. The initial images containing information about the solid phase, the images from the mechanical tests and the finite element models were combined to explain the mechanical behaviour of the sample by linking the experimental damage locations in the sample and the simulated stress concentration sites.

Page generated in 0.0393 seconds