Return to search

Étude mathématique et numérique des méthodes de réduction dimensionnelle de type POD et PGD / Mathematical and numerical study of POD and PGD dimensional reduction methods

Ce mémoire de thèse est formé de quatre chapitres. Un premier chapitre présente les différentes notions et outils mathématiques utilisés dans le corps de la thèse ainsi qu’une description des résultats principaux que nous avons obtenus. Le second chapitre présente une généralisation d’un résultat obtenu par Rousselet-Chénais en 1990 qui décrit la sensibilité des sous-espaces propres d’opérateurs compacts auto-adjoints. Rousselet-Chénais se sont limités aux sous-espaces propres de dimension 1 et nous avons étendu leur résultat aux dimensions supérieures. Nous avons appliqué nos résultats à la Décomposition par Projection Orthogonale (POD) dans le cas de variation paramétrique, temporelle ou spatiale (Gappy-POD). Le troisième chapitre traite de l’estimation du flot optique avec des énergies quadratiques ou linéaires à l’infini. On montre des résultats mathématiques de convergence de la méthode de Décomposition Progressive Généralisée (PGD) dans le cas des énergies quadratiques. Notre démonstration est basée sur la décomposition de Brézis-Lieb via la convergence presque-partout de la suite gradient PGD. Une étude numérique détaillée est faite sur différents type d’images : sur les équations de transport de scalaire passif, dont le champ de déplacement est solution des équations de Navier-Stokes. Ces équations présentent un défi pour l’estimation du flot optique à cause du faible gradient dans plusieurs régions de l’image. Nous avons appliqué notre méthode aux séquences d’images IRM pour l’estimation du mouvement des organes abdominaux. La PGD a présenté une supériorité à la fois au niveau du temps de calcul (même en 2D) et au niveau de la représentation correcte des mouvements estimés. La diffusion locale des méthodes classiques (Horn & Schunck, par exemple) ralentit leur convergence contrairement à la PGD qui est une méthode plus globale par nature. Le dernier chapitre traite de l’application de la méthode PGD dans le cas d’équations elliptiques variationnelles dont l’énergie présente tous les défis aux méthodes variationnelles classiques : manque de convexité, manque de coercivité et manque du caractère borné de l’énergie. Nous démontrons des résultats de convergence, pour la topologie faible, des suites PGD (lorsqu’elles sont bien définies) vers deux solutions extrémales sur la variété de Nehari. Plusieurs questions mathématiques concernant la PGD restent ouvertes dans ce chapitre. Ces questions font partie de nos perspectives de recherche. / This thesis is formed of four chapters. The first one presents the mathematical notions and tools used in this thesis and gives a description of the main results obtained within. The second chapter presents our generalization of a result obtained by Rousselet-Chenais in 1990 which describes the sensitivity of eigensubspaces for self-adjoint compact operators. Rousselet-Chenais were limited to sensitivity for specific subspaces of dimension 1, we have extended their result to higher dimensions. We applied our results to the Proper Orthogonal Decomposition (POD) in the case of parametric, temporal and spatial variations (Gappy- POD). The third chapter discusses the optical flow estimate with quadratic or linear energies at infinity. Mathematical results of convergence are shown for the method Progressive Generalized Decomposition (PGD) in the case of quadratic energies. Our proof is based on the decomposition of Brézis-lieb via the convergence almost everywhere of the PGD sequence gradients. A detailed numerical study is made on different types of images : on the passive scalar transport equations, whose displacement fields are solutions of the Navier-Stokes equations. These equations present a challenge for optical flow estimates because of the presence of low gradient regions in the image. We applied our method to the MRI image sequences to estimate the movement of the abdominal organs. PGD presented a superiority in both computing time level (even in 2D) and accuracy representation of the estimated motion. The local diffusion of standard methods (Horn Schunck, for example) limits the convergence rate, in contrast to the PGD which is a more global approach by construction. The last chapter deals with the application of PGD method in the case of variational elliptic equations whose energy present all challenges to classical variational methods : lack of convexity, lack of coercivity and lack of boundedness. We prove convergence results for the weak topology, the PGD sequences converge (when they are well defined) to two extremal solutions on the Nehari manifold. Several mathematical questions about PGD remain open in this chapter. These questions are part of our research perspectives.

Identiferoai:union.ndltd.org:theses.fr/2015LAROS004
Date07 May 2015
CreatorsSaleh, Marwan
ContributorsLa Rochelle, El Hamidi, Abdallah
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds