• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et commande de micropinces en silicium pour l'amélioration de la sensibilité paramétrique d'expériences biologiques sur des molécules d'ADN

Lafitte, Nicolas 04 April 2012 (has links) (PDF)
L'objectif de cette thèse est de réaliser des expériences biologiques sur des molécules d'ADN à l'aide de micropinces en technologie silicium. Les techniques de mesures à l'échelle d'une molécule unique dépendent essentiellement d'outils très complexes à mettre en œuvre et à utiliser. Afin de se diriger vers des analyses systématiques et temps réel, la conception et la fabrication des micropinces MEMS ont été réalisées au sein du laboratoire. Les molécules d'ADN sont attrapées directement en solution par diélectrophorèse, puis des réactions biologiques sur l'ADN sont caractérisées en temps réel par le suivi de la résonance mécanique du système. La résolution des mesures permet alors de détecter la raideur mécanique de 30 molécules de lambda-ADN (i.e. 20 mN/m). Etant donné qu'il est compliqué de fabriquer un nouveau microsystème avec une raideur très faible (< 1 N/m), une commande par retour d'état a été développée afin d'émuler un système plus élastique et plus sensible¬ ¬aux variations de paramètres. Il a été démontré par simulations que la sensibilité peut être améliorée par un facteur 10 quand la fréquence de résonance du système en boucle fermée est divisée par 10 (i.e. en réduisant la raideur effective du système). Nous avons démontré par expérience une amélioration jusqu'à un facteur 2. Cependant, les problèmes sont alors d'obtenir stabilité et robustesse aux perturbations et aux défauts du modèle. Par conséquent, avant d'atteindre la résolution d'une seule molécule d'ADN, les problématiques concernant la modélisation du système et la présence de nombreuses dynamiques ont été étudiées et corrigées dans de but d'une meilleure implémentation de la commande.
2

Modélisation d'une Pile à Combustible de type PEM par Réseaux de Neurones

Jemeï, Samir 14 October 2004 (has links) (PDF)
Ce travail apporte une contribution à la modélisation des piles à combustible de type PEM. La modélisation fait ici appel aux réseaux artificiels de neurones et est appliquée à deux piles à combustible de puissances différentes. La première partie de ce mémoire rappelle les verrous technologiques liés à l'intégration des piles à combustibles dans un véhicule. Puis l'auteur s'interroge sur la nécessité de modéliser une pile à combustible avant de se pencher sur les différentes méthodes de modélisation existante. La réalisation d'un modèle neuronal décrivant le comportement statique d'une pile à combustible de type PEM est la première étape de cette étude. La deuxième partie décrit la démarche qui a permis de réaliser ce modèle. Elle se décompose en trois points essentiels : 1) choix d'une topologie adaptée, 2) choix d'essais expérimentaux pour établir une séquence d'apprentissage représentative du système et choix des entrées/sorties du modèle, 3) étude de différentes techniques d'apprentissage menant à une modélisation satisfaisante. Afin d'obtenir un modèle complet, le comportement dynamique de la pile doit être décrit. L'élaboration du modèle dynamique à l'aide de réseaux de neurones bouclés est exposée dans la troisième partie. Pour conclure ce mémoire, une méthode originale basée sur l'analyse de Fourier permet d'obtenir une boîte noire multi-modèle permettant de coupler les modèles dynamiques et statiques pour prédire l'évolution temporelle de la tension de la pile à combustible selon des sollicitations de courant à fréquence variable. Enfin, une étude de sensibilité paramétrique est réalisée.
3

Modeling and control of MEMS tweezers for the characteriza- tions of enzymatic reactions on DNA molecules / Caractérisation et commande de micropince en silicium pour l’amélioration de la sensibilité paramétrique d’expériences biologiques sur des molécules d’ADN

Lafitte, Nicolas 04 April 2012 (has links)
L’objectif de ce travail de thèse est de démontrer pour la première fois la capture, la manipulationet la caractérisation de molécules biologiques grâce à une micropince réaliséeen technologie microsystème. La molécule d’ADN étant, dans un premier temps, la moléculecible, des fibres d’ADN sont capturées grâce à l’immersion de la micropince dansun petit volume inférieur à 1 μL de solution contenant les molécules. Elles sont ensuitecaractérisées mécaniquement et électriquement grâce aux fonctionnalités intégrées sur lamême puce en silicium.Le second volet de ce travail consiste à améliorer les performances du système pouratteindre la résolution d’une seule molécule. En effet dans le but d’étudier les phénomènesd’interactions au niveau moléculaire, il s’avère essentiel d’améliorer le système. Dans cebut précis, une commande par retour d’état de la micropince est étudiée. Elle permetalors de spécifiquement sensibiliser le système aux variations de raideur mécanique dusystème {micropince + molécules d’ADN}.[...] / The main objective of this Ph.D. work is to achieve biological experimentson DNA molecules with versatile silicon nanotweezers. Experiments on single moleculerely mostly on Optical Tweezers, Magnetic Tweezers or Atomic Force Spectroscopy, buthave a low throughput since preparations are done one at a time. To move towardssystematic biological or medical analysis, micro- and nano-systems (MNEMS) are theappropriate tools as they can integrate accurate molecular level engineering tools andcan be cheaply produced with highly parallel process.Design and fabrication of the silicon tweezers are made by ourselves in the lab of Pr.Hiroyuki Fujita (U. of Tokyo, Japan). DNA molecules are firstly trapped in solution bydielectrophoresis. Then biological reactions are characterized in real-time by monitoringthe mechanical resonance of the system {tweezers + DNA bundle}. The resolution of themeasurements allowed the sensing of about 30 of λ-DNA molecule stiffness (i.e. about20 mN/m). To achieve the single molecule resolution, we propose to implement a feedbackstrategy to alter the system.State feedback was developed to emulate a new system more sensitive to mechanicalstiffness parameter detection. As it remains problematic to design and fabricate newmicro mechanical device with extremely low stiffness (< 1 N/m), we propose to emulate acompliant system. By simulations it was demonstrated an enhancement of the sensitivityof about 10 when the resonant frequency of the closed-loop system is designed to be 10times lower than the tweezers resonant frequency (i.e. reducing the stiffness parameterof the system). Experimentally we demonstrated an improvement of the the sensitivityof superior to 2. However the issue is here to obtain stability, robustness with respectto disturbances and unmodeled dynamics. Before to attain the sensitivity of the singlemolecule, problematics about the model of the device or about the several dynamics ofthe device needs to be dealt in order to control and fit the improvement with the theory.
4

Étude mathématique et numérique des méthodes de réduction dimensionnelle de type POD et PGD / Mathematical and numerical study of POD and PGD dimensional reduction methods

Saleh, Marwan 07 May 2015 (has links)
Ce mémoire de thèse est formé de quatre chapitres. Un premier chapitre présente les différentes notions et outils mathématiques utilisés dans le corps de la thèse ainsi qu’une description des résultats principaux que nous avons obtenus. Le second chapitre présente une généralisation d’un résultat obtenu par Rousselet-Chénais en 1990 qui décrit la sensibilité des sous-espaces propres d’opérateurs compacts auto-adjoints. Rousselet-Chénais se sont limités aux sous-espaces propres de dimension 1 et nous avons étendu leur résultat aux dimensions supérieures. Nous avons appliqué nos résultats à la Décomposition par Projection Orthogonale (POD) dans le cas de variation paramétrique, temporelle ou spatiale (Gappy-POD). Le troisième chapitre traite de l’estimation du flot optique avec des énergies quadratiques ou linéaires à l’infini. On montre des résultats mathématiques de convergence de la méthode de Décomposition Progressive Généralisée (PGD) dans le cas des énergies quadratiques. Notre démonstration est basée sur la décomposition de Brézis-Lieb via la convergence presque-partout de la suite gradient PGD. Une étude numérique détaillée est faite sur différents type d’images : sur les équations de transport de scalaire passif, dont le champ de déplacement est solution des équations de Navier-Stokes. Ces équations présentent un défi pour l’estimation du flot optique à cause du faible gradient dans plusieurs régions de l’image. Nous avons appliqué notre méthode aux séquences d’images IRM pour l’estimation du mouvement des organes abdominaux. La PGD a présenté une supériorité à la fois au niveau du temps de calcul (même en 2D) et au niveau de la représentation correcte des mouvements estimés. La diffusion locale des méthodes classiques (Horn & Schunck, par exemple) ralentit leur convergence contrairement à la PGD qui est une méthode plus globale par nature. Le dernier chapitre traite de l’application de la méthode PGD dans le cas d’équations elliptiques variationnelles dont l’énergie présente tous les défis aux méthodes variationnelles classiques : manque de convexité, manque de coercivité et manque du caractère borné de l’énergie. Nous démontrons des résultats de convergence, pour la topologie faible, des suites PGD (lorsqu’elles sont bien définies) vers deux solutions extrémales sur la variété de Nehari. Plusieurs questions mathématiques concernant la PGD restent ouvertes dans ce chapitre. Ces questions font partie de nos perspectives de recherche. / This thesis is formed of four chapters. The first one presents the mathematical notions and tools used in this thesis and gives a description of the main results obtained within. The second chapter presents our generalization of a result obtained by Rousselet-Chenais in 1990 which describes the sensitivity of eigensubspaces for self-adjoint compact operators. Rousselet-Chenais were limited to sensitivity for specific subspaces of dimension 1, we have extended their result to higher dimensions. We applied our results to the Proper Orthogonal Decomposition (POD) in the case of parametric, temporal and spatial variations (Gappy- POD). The third chapter discusses the optical flow estimate with quadratic or linear energies at infinity. Mathematical results of convergence are shown for the method Progressive Generalized Decomposition (PGD) in the case of quadratic energies. Our proof is based on the decomposition of Brézis-lieb via the convergence almost everywhere of the PGD sequence gradients. A detailed numerical study is made on different types of images : on the passive scalar transport equations, whose displacement fields are solutions of the Navier-Stokes equations. These equations present a challenge for optical flow estimates because of the presence of low gradient regions in the image. We applied our method to the MRI image sequences to estimate the movement of the abdominal organs. PGD presented a superiority in both computing time level (even in 2D) and accuracy representation of the estimated motion. The local diffusion of standard methods (Horn Schunck, for example) limits the convergence rate, in contrast to the PGD which is a more global approach by construction. The last chapter deals with the application of PGD method in the case of variational elliptic equations whose energy present all challenges to classical variational methods : lack of convexity, lack of coercivity and lack of boundedness. We prove convergence results for the weak topology, the PGD sequences converge (when they are well defined) to two extremal solutions on the Nehari manifold. Several mathematical questions about PGD remain open in this chapter. These questions are part of our research perspectives.

Page generated in 0.112 seconds