Estimation statistique non paramétrique appliquée à la surveillance des eaux côtières / Nonparametric estimation applied to the coastal water monitoring

La protection de l’environnement, en particulier celle des systèmes aquatiques, est une des priorités de nos sociétés. L’utilisation de capteurs biologiques permettant de tester la qualité de l’eau en continue est une voie possible de surveillance intégrée des milieux aquatiques. Cette démarche a été mise en place avec succès sur des mollusques bivalves équipés d’électrodes légères qui respectent leur comportement naturel, on parle alors de valvométrie. Le but de cette thèse est de calculer et traiter automatiquement la vitesse de mouvement des valves de mollusques bivalves installés dans divers milieux aquatiques. Les années d’enregistrements déjà acquises nous permettrons, à partir de nos modèles, de détecter s’il existe des variations de la vitesse de mouvement des valves liées aux variations de température. Plus particulièrement, nous avons étudié les dérivées de différents estimateurs non paramétriques d’une fonction de régression : l’estimateur récursif de Nadaraya-Watson, l’estimateur de Johnston, l’estimateur de Wand-Jones ainsi que l’estimateur de Révész. Nous avons aussi pris en compte la version déterministe de l’estimateur de Nadaraya-Watson. Pour chacun des estimateurs nous avons mené une étude sur les comportement asymptotiques en particulier la convergence presque sûre et la normalité asymptotique. Nous avons illustré numériquement ces propriétés et appliqué ces nouvelles méthodes d’estimations sur des données réelles afin de valider, ou non, les hypothèses environnementales émises par les biologistes. / The protection of the environment, in particular aquatic systems, should be tackled as one of the top priorities of our society. The use of biological sensors to continuously test water quality is a possible way of monitoring aquatic environments. This approach has been successfully implemented on bivalve molluscs equipped with light electrodes that respect their natural behaviour, we then speak of valvometry. The purpose of this thesis is to automatically calculate and process the velocity of movement of bivalve mollusc valves in various aquatic environments. Years of recordings already acquired will allow us, from our models, to detect if there are variations in the speed of movement of the valves related to temperature variations. In particular, we studied the derivatives of different non parametric estimators of the regression function : the recursive Nadaraya-Watson estimator, the Johnston estimator, the Wand-Jones estimator and the Révész estimator. We also considered the deterministic version of the Nadaraya-Watson estimator. For each of the estimators we conducted a study on the asymptotic behaviour especially on the almost sure convergence and th asymptotic normality. We digitally illustrated these properties and applied these new estimation methods to real data to validate, or not, the environmental assumptions made by biologists.

Identiferoai:union.ndltd.org:theses.fr/2018BORD0128
Date20 September 2018
CreatorsCapderou, Sami
ContributorsBordeaux, Bercu, Bernard, Durrieu, Gilles
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds