• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation statistique non paramétrique appliquée à la surveillance des eaux côtières / Nonparametric estimation applied to the coastal water monitoring

Capderou, Sami 20 September 2018 (has links)
La protection de l’environnement, en particulier celle des systèmes aquatiques, est une des priorités de nos sociétés. L’utilisation de capteurs biologiques permettant de tester la qualité de l’eau en continue est une voie possible de surveillance intégrée des milieux aquatiques. Cette démarche a été mise en place avec succès sur des mollusques bivalves équipés d’électrodes légères qui respectent leur comportement naturel, on parle alors de valvométrie. Le but de cette thèse est de calculer et traiter automatiquement la vitesse de mouvement des valves de mollusques bivalves installés dans divers milieux aquatiques. Les années d’enregistrements déjà acquises nous permettrons, à partir de nos modèles, de détecter s’il existe des variations de la vitesse de mouvement des valves liées aux variations de température. Plus particulièrement, nous avons étudié les dérivées de différents estimateurs non paramétriques d’une fonction de régression : l’estimateur récursif de Nadaraya-Watson, l’estimateur de Johnston, l’estimateur de Wand-Jones ainsi que l’estimateur de Révész. Nous avons aussi pris en compte la version déterministe de l’estimateur de Nadaraya-Watson. Pour chacun des estimateurs nous avons mené une étude sur les comportement asymptotiques en particulier la convergence presque sûre et la normalité asymptotique. Nous avons illustré numériquement ces propriétés et appliqué ces nouvelles méthodes d’estimations sur des données réelles afin de valider, ou non, les hypothèses environnementales émises par les biologistes. / The protection of the environment, in particular aquatic systems, should be tackled as one of the top priorities of our society. The use of biological sensors to continuously test water quality is a possible way of monitoring aquatic environments. This approach has been successfully implemented on bivalve molluscs equipped with light electrodes that respect their natural behaviour, we then speak of valvometry. The purpose of this thesis is to automatically calculate and process the velocity of movement of bivalve mollusc valves in various aquatic environments. Years of recordings already acquired will allow us, from our models, to detect if there are variations in the speed of movement of the valves related to temperature variations. In particular, we studied the derivatives of different non parametric estimators of the regression function : the recursive Nadaraya-Watson estimator, the Johnston estimator, the Wand-Jones estimator and the Révész estimator. We also considered the deterministic version of the Nadaraya-Watson estimator. For each of the estimators we conducted a study on the asymptotic behaviour especially on the almost sure convergence and th asymptotic normality. We digitally illustrated these properties and applied these new estimation methods to real data to validate, or not, the environmental assumptions made by biologists.
2

Développement de modèles non paramétriques et robustes : application à l’analyse du comportement de bivalves et à l’analyse de liaison génétique

Sow, Mohamedou 20 May 2011 (has links)
Le développement des approches robustes et non paramétriques pour l’analyse et le traitement statistique de gros volumes de données présentant une forte variabilité,comme dans les domaines de l’environnement et de la génétique, est fondamental.Nous modélisons ici des données complexes de biologie appliquées à l’étude du comportement de bivalves et à l’analyse de liaison génétique. L’application des mathématiques à l’analyse du comportement de mollusques bivalves nous a permis d’aller vers une quantification et une traduction mathématique de comportements d’animaux in-situ, en milieu proche ou lointain. Nous avons proposé un modèle de régression non paramétrique et comparé 3 estimateurs non paramétriques, récursifs ou non,de la fonction de régression pour optimiser le meilleur estimateur. Nous avons ensuite caractérisé des rythmes biologiques, formalisé l’évolution d’états d’ouvertures,proposé des méthodes de discrimination de comportements, utilisé la méthode des shot-noises pour caractériser différents états d’ouverture-fermetures transitoires et développé une méthode originale de mesure de croissance en ligne.En génétique, nous avons abordé un cadre plus général de statistiques robustes pour l’analyse de liaison génétique. Nous avons développé des estimateurs robustes aux hypothèses de normalités et à la présence de valeurs aberrantes, nous avons aussi utilisé une approche statistique, où nous avons abordé la dépendance entre variables aléatoires via la théorie des copules. Nos principaux résultats ont montré l’intérêt pratique de ces estimateurs sur des données réelles de QTL et eQTL. / The development of robust and nonparametric approaches for the analysis and statistical treatment of high-dimensional data sets exhibiting high variability, as seen in the environmental and genetic fields, is instrumental. Here, we model complex biological data with application to the analysis of bivalves’ behavior and to linkage analysis. The application of mathematics to the analysis of mollusk bivalves’behavior gave us the possibility to quantify and translate mathematically the animals’behavior in situ, in close or far field. We proposed a nonparametric regression model and compared three nonparametric estimators (recursive or not) of the regressionfunction to optimize the best estimator. We then characterized the biological rhythms, formalized the states of opening, proposed methods able to discriminate the behaviors, used shot-noise analysis to characterize various opening/closing transitory states and developed an original approach for measuring online growth.In genetics, we proposed a more general framework of robust statistics for linkage analysis. We developed estimators robust to distribution assumptions and the presence of outlier observations. We also used a statistical approach where the dependence between random variables is specified through copula theory. Our main results showed the practical interest of these estimators on real data for QTL and eQTL analysis.
3

Stochastic modelling using large data sets : applications in ecology and genetics / Modélisation stochastique de grands jeux de données : applications en écologie et en génétique

Coudret, Raphaël 16 September 2013 (has links)
Deux parties principales composent cette thèse. La première d'entre elles est consacrée à la valvométrie, c'est-à-dire ici l'étude de la distance entre les deux parties de la coquille d'une huître au cours du temps. La valvométrie est utilisée afin de déterminer si de tels animaux sont en bonne santé, pour éventuellement tirer des conclusions sur la qualité de leur environnement. Nous considérons qu'un processus de renouvellement à quatre états sous-tend le comportement des huîtres étudiées. Afin de retrouver ce processus caché dans le signal valvométrique, nous supposons qu'une densité de probabilité reliée à ce signal est bimodale. Nous comparons donc plusieurs estimateurs qui prennent en compte ce type d'hypothèse, dont des estimateurs à noyau.Dans un second temps, nous comparons plusieurs méthodes de régression, dans le but d'analyser des données transcriptomiques. Pour comprendre quelles variables explicatives influent sur l'expression de gènes, nous avons réalisé des tests multiples grâce au modèle linéaire FAMT. La méthode SIR peut être envisagée pour trouver des relations non-linéaires. Toutefois, elle est principalement employée lorsque la variable à expliquer est univariée. Une version multivariée de cette approche a donc été développée. Le coût d'acquisition des données transcriptomiques pouvant être élevé, la taille n des échantillons correspondants est souvent faible. C'est pourquoi, nous avons également étudié la méthode SIR lorsque n est inférieur au nombre de variables explicatives p. / There are two main parts in this thesis. The first one concerns valvometry, which is here the study of the distance between both parts of the shell of an oyster, over time. The health status of oysters can be characterized using valvometry in order to obtain insights about the quality of their environment. We consider that a renewal process with four states underlies the behaviour of the studied oysters. Such a hidden process can be retrieved from a valvometric signal by assuming that some probability density function linked with this signal, is bimodal. We then compare several estimators which take this assumption into account, including kernel density estimators.In another chapter, we compare several regression approaches, aiming at analysing transcriptomic data. To understand which explanatory variables have an effect on gene expressions, we apply a multiple testing procedure on these data, through the linear model FAMT. The SIR method may find nonlinear relations in such a context. It is however more commonly used when the response variable is univariate. A multivariate version of SIR was then developed. Procedures to measure gene expressions can be expensive. The sample size n of the corresponding datasets is then often small. That is why we also studied SIR when n is less than the number of explanatory variables p.

Page generated in 0.0233 seconds