Return to search

Mechanistic understanding of high strain rate impact behavior of ultra-high molecular weight polyethylene and the mechanism of coating formation during cold spraying / Analyse mécanique du comportement du polyéthylène à ultra haut poids moléculaire lors d'impact à haute vitesse et mécanismes de formation d'un revêtement en "cold-spray"

Des travaux récents ont montré que des revêtements polymères étaient réalisables par procédé connu sous le nom de Cold-Spray. Ces travaux sont particulièrement importants pour le polyéthylène de très haute masse molaire (UHMWPE) qui ne peuvent pas être mis en forme par les méthodes conventionnelles. Mais les mécanismes d'obtention des dépôts n'avaient pas été analysés. Cette thèse présente une analyse expérimentale mécanique détaillée du comportement à l'impact de particules d'UHMWPE et des mécanismes de formation du revêtement polymère sur un substrat en aluminium (Al) sous l'effet de la pulvérisation à froid de ces particules. La formation du revêtement se décompose en deux étapes : (1) se rapporte à la formation de la première couche de particules (interaction polymère-substrat), (2) à la croissance (par ajout de couches successives) du revêtement polymère (interaction polymère-polymère). La première étape de la formation du revêtement a été étudiée grâce à une technique expérimentale développée dans le cadre de cette thèse et appelée "Méthode de dépôt de particules isolées" (IPD). Il s'agit de déposer des particules isolées de UHMWPE sur un substrat en Al, en utilisant la même machine Cold-Spray, tout en contrôlant de manière précise la température du gaz et la teneur en FNA. Grâce à l'utilisation d'une caméra rapide, il a été possible de déterminer la vitesse des particules d'UHMWPE et par le calcul d'évaluer leur température avant et pendant leur impact. L'efficacité augmente avec d'une part la température et d'autre part la fraction de FNA. Cette efficacité dépend de la compétition entre l'énergie cinétique stockée sous forme d'énergie élastique Eel et l'énergie d'adhésion Ead du polymère à la surface du substrat. Pour que le film polymère se forme, il faut que Ead > Eel. Par ailleurs, Ead dépend de l'interface entre polyéthylène et aluminium, et de la présence de FNA. Les liaisons H disponibles sur la surface des FNA contribuent à l'adhésion, ce qui augmente le domaine de température favorable à la réalisation du dépôt. Concernant la croissance du revêtement, il s'agit cette fois-ci de l'adhésion polyéthylène-polyéthylène, avec toujours l'effet des nanoparticules FNA. Les études microstructurales et mécanique ont montré qu'en frittage conventionnel du UHMWPE sous forte pression, l'ajout de FNA renforce la cohésion des matériaux obtenus, mais que l'effet inverse est observé pour un frittage incomplet (sous faible pression). Enfin, afin d'explorer l'effet de vitesse de sollicitation de l'UHMWPE comparable à celles observées pour le Cold-Spray, des expériences utilisant des barres dites de Split-Hopkinson (SHPB) ont été menées. Les courbes obtenues permettent de disposer d'une cartographie complète du comportement thermo-viscoélasto-plastique de ce polymère, pur ou additionné de FNA. / Recent developments showed polymer coatings to be feasible by cold spray (CS) technique on different surfaces. This is especially important for Ultra-High Molecular Weight Polyethylene (UHMWPE) which cannot be classically processed. But the mechanisms behind coating formation was not largely understood. The thesis presents a mechanistic understanding of high strain rate impact behavior of Ultra-High Molecular Weight Polyethylene and the mechanism of coating formation during CS. The coating formation is first broken down into two major categories: 1. Interaction of UHMWPE with Al substrate (impacting particle-substrate interaction) during a high-speed impact and interaction of UHMWPE with already deposited UHMWPE particles (impacting particle-deposited particles) leading to a buildup in the coating. First stage of coating formation was understood from a technique developed for this work called Isolated Particle Deposition (IPD). In the experimental IPD process, effects of gas temperature and FNA content were calibrated empirically by depositing UHMWPE particles in an isolated manner on an Al substrate. The Deposition efficiency increased with gas temperature and FNA content. The use of an ultrafast video-camera helped to determine the particle velocity, and theoretical calculations helped to evaluate the temperature of UHMWPE particles before and during the impact process. Mechanical response of UHMWPE at different temperatures were understood by calculating elastic strain energy of UHMWPE which decreased with increasing material temperature and increased with the strain rate. Rebound of UHMWPE particles on Al surface depended upon whether UHMWPE particles after impact furnished a contact area with an interfacial bond stronger than elastic strain energy of the particle. External contributions like H-bonds on the FNA surface provide sufficiently strong extra bonds at the contact surface to increase the window of deposition at higher temperatures, which was otherwise very low. Second stage of coating formation was understood from the mechanism of welding of UHMWPE grains at different interfacial loading conditions and at varying FNA contents. The morphological and mechanical characterization showed that when UHMWPE was processed under high loading conditions (using classical sintering technique), FNA particles reinforced the UHMWPE interface. On the contrary, when UHMWPE was processed under low loading conditions, FNA particles weakened the interface. Last to be discussed in the thesis is the strain rate effect of UHMWPE using Split-Hopkinson Pressure Bar (SHPB) experiments, in order to approach comparable conditions to what happens during particle impacts. This part of the study discussed in detail the effects a high strain-rate compression has on UHMWPE by analyzing its stress-strain curves, with and without FNA. Thus, the mechanical response data with the inclusion 0%, 4% and 10% FNA to UHMWPE is also presented and discussed.

Identiferoai:union.ndltd.org:theses.fr/2018LYSEI008
Date22 January 2018
CreatorsRavi, Kesavan
ContributorsLyon, Tōhoku Daigaku (Sendai, Japon), Lame, Olivier, Ogawa, Kazuhiro
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds