Return to search

Interfacial Electrochemistry of Cu/Al Alloys for IC Packaging and Chemical Bonding Characterization of Boron Doped Hydrogenated Amorphous Silicon Films for Infrared Cameras

We focused on a non-cooling room temperature microbolometer infrared imaging array device which includes a sensing layer of p-type a-Si:H component layers doped with boron. Boron incorporation and bonding configuration were investigated for a-Si:H films grown by plasma enhanced chemical deposition (PECVD) at varying substrate temperatures, hydrogen dilution of the silane precursor, and dopant to silane ratio using multiple internal reflection infrared spectroscopy (MIR-IR). This study was then confirmed from collaborators via Raman spectroscopy. MIR-IR analyses reveal an interesting counter-balance relationship between boron-doping and hydrogen-dilution growth parameters in PECVD-grown a-Si:H. Specifically, an increase in the hydrogen dilution ratio (H2/SiH4) or substrate temperature was found to increase organization of the silicon lattice in the amorphous films. It resulted in the decrease of the most stable SiH bonding configuration and thus decrease the organization of the film. The new chemical bonding information of a-Si:H thin film was correlated with the various boron doping mechanisms proposed by theoretical calculations. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. This is due to defects and a higher copper content at the grain boundary. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed.

(Chapter 4) Aluminum bond pad corrosion activity and mechanistic insight at a Cu/Al bimetallic interface typically used in microelectronic packages for automotive applications were investigated by means of optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemistry. Screening of corrosion variables (temperature, moisture, chloride ion concentration, pH) have been investigated to find their effect on corrosion rate and to better understand the Al/Cu bimetallic corrosion mechanism. The study revealed the corrosion morphology progression on aluminum alloy (Al, 0.5% Cu) under acidic chloride solution. The corrosion starts as surface roughening which evolves into a dendrite structure and later continues to grow into a mud-crack type corrosion. SEM showed the early stage of corrosion with dendritic formation usually occurs at the grain boundary. This is due to defects and a higher copper content at the grain boundary. The impact of copper bimetallic contact on aluminum corrosion was explored by sputtering copper microdots on aluminum substrate. Copper micropattern screening revealed that the corrosion is activated on the Al/Cu interface area and driven by the large potential difference; it was also seen to proceed at much higher rates than those observed with bare aluminum. Direct galvanic current measurement, linear sweep voltammetry (LSV), and Tafel plots are used to measure corrosion current and potential. Hydrogen gas evolution was also observed (for the first time) in Cu/Al bimetallic interface in areas of active corrosion. Mechanistic insight that leads to effective prevention of aluminum bond pad corrosion is explored and discussed. Micropattern corrosion screening identified hydrogen evolution and bimetallic interface as the root cause of Al pad corrosion that leads to Cu ball lift-off, a fatal defect, in Cu wire bonded device. Complete corrosion inhibition can be achieved by strategically disabling the mutually coupled cathodic and anodic reaction cycles.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc849696
Date05 1900
CreatorsRoss, Nick
ContributorsChyan, Oliver Ming-Ren, Golden, Teresa Diane, 1963-, Acree, William E. (William Eugene), Omary, Mohammad A., 1969-
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatxvii, 141 pages : illustrations, Text
RightsPublic, Ross, Nick, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0018 seconds