Ειδικές επιφάνειες του χώρου Ε3 1 με ΔΙΙΙ r = Ar και διαρμονικές υπερεπιφάνειες Μ23 του χώρου Ε24

Στην παρούσα διδακτορική διατριβή μελετάμε τρία Προβλήματα που αναφέρονται στην Ψευδο-Ευκλείδεια Γεωμετρία. Στα δύο πρώτα Κεφάλαια, Κεφάλαιο 1 και Κεφάλαιο 2 αναφέρουμε γνωστά αποτελέσματα και περιγράφουμε βασικές έννοιες της Ρημάννιας και Ψευδό - Ρημάννιας Γεωμετρίας. Στο Κεφάλαιο 3 μελετάμε επιφάνειες εκ περιστροφής στον τρισδιάστατο Lorentz - Minkowski χώρο ικανοποιώντας δοσμένη γεωμετρική συνθήκη. Στο Κεφάλαιο 4 βρίσκουμε όλες τις κανονικές μορφές του τελεστή σχήματος των τρισδιάστατων υπερεπιφανειών τύπου (-, +, -) του τετρασδιάστατου Ψευδο - Ευκλείδειου χώρου τύπου (-, +, -, +). Τέλος, στο Κεφάλαιο 5 μελετάμε τη σχέση που υπάρχει μεταξύ των διαρμονικών και ελαχιστικών υπερεπιφανειών που αναφέρθηκαν στο Κεφάλαιο 4, χρησιμοποιώντας τον τελεστή σχήματός τους. Ειδικότερα, αποδεικνύουμε ότι κάθε τέτοια διαρμονική υπερεπιφάνεια είναι ελαχιστική. / In the present PH.D. thesis we study three problems referred in the pseudo-Euclidean geometry. In the first two chapters, Chapter 1 and Chapter 2, we review known results and describe the basic notions of the Riemannian and Pseudo-Riemannian geometry. In Chapter 3, we study surfaces of revolution of the three dimensional Lorentz-Minkowski space satisfying given geometric condition. In Chapter 4, we find all the canonical forms of the shape operator of the three dimensional hypersurfaces of signature (-, +, -) of the four dimensional pseudo-Euclidean space of signature (-, +, -, +). Finally, in Chapter 5, we study the relation which exists between the biharmonic and minimal hypersurfaces referred in Chapter 4, by using their shape operator. Precisely, we prove that every such biharmonic hypersurface is minimal.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/4246
Date20 April 2011
CreatorsΠετούμενος, Κωνσταντίνος
ContributorsΠαπαντωνίου, Βασίλειος, Petoumenos, Konstantinos, Κοτσιώλης, Αθανάσιος, Αρβανιτογεώργος, Ανδρέας, Κουφογιώργος, Θεμιστοκλής, Μπαϊκούσης, Χρήστος, Ξένος, Φίλιππος, Γουλή - Ανδρέου, Φλωρεντία, Παπαντωνίου, Βασίλειος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
TypeThesis
Rights0
RelationΗ ΒΚΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.003 seconds