В современном мире машинное обучение и анализ данных широко применяются в науке и технике, в том числе в медицинской диагностике и исследовании окуломоторной активности. Окулография, изучающая движения глаз, становится всё популярнее в медицинских областях, включая неврологию. В работе описывается процесс извлечение и классификация признаков из окулографических данных двух групп риска испытуемых с целью выявления наличия заболевания дислексии с использованием различных подходов и методов машинного обучения. / In modern world, machine learning and data analysis are widely used in science and technology, including in medical diagnostics and research of oculomotor activity. Oculography, studying eye movements, becomes more and more popular in medical fields, including neurology. This work describes the process of extracting and classifying features from oculographic data of two risk groups of subjects in order to detect the presence of dyslexia using various machine learning approaches and methods.
Identifer | oai:union.ndltd.org:urfu.ru/oai:elar.urfu.ru:10995/140513 |
Date | January 2024 |
Creators | Колосов, И. В., Kolosov, I. V. |
Contributors | Долганов, А. Ю., Dolganov, A. Yu., УрФУ. Институт радиоэлектроники и информационных технологий-РТФ, Кафедра информационных технологий и систем управления |
Publisher | б. и. |
Source Sets | Ural Federal University |
Language | Russian |
Detected Language | Russian |
Type | Master's thesis, info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | Предоставлено автором на условиях простой неисключительной лицензии, http://elar.urfu.ru/handle/10995/31613 |
Page generated in 0.0016 seconds