1 |
Повреждение механики сердца молодых спортсменов с ложными сухожилиями в левом желудочке при адаптации к физическим нагрузкам : автореферат диссертации на соискание ученой степени кандидата медицинских наук : 14.03.03Мехдиева, К. Р. January 2015 (has links)
No description available.
|
2 |
Выявление аномалий технологического процесса на примере макета очистной установки воды SWaT (Secure Water Treatment) : магистерская диссертация / Identification of technological process anomalies using the example of a mock-up of a SWaT (Secure Water Treatment) water treatment plantЖериборова, Е. В., Zheriborova, E. V. January 2023 (has links)
Цель работы – анализ моделей машинного обучения, направленных на обнаружение аномалий на промышленных предприятиях, использующих автоматизированные системы управления технологическим процессом, а также выявление причин аномалий. Объектом исследования является выявление аномалий во время работы технологического оборудования, агрегатов, установок, отдельных производств – выявление атак на датчик или группу датчиков. Рассматриваются основные модели машинного обучения, позволяющие выявлять аномалии, которые могут возникать при попытках внешнего воздействия, так и при технологических неисправностях промышленного производства. Рассмотрена модель – AutoEncoder. Оценена точность предсказания применяемой модели ML. / The purpose of the work is to analyze machine learning models aimed at detecting anomalies at industrial enterprises using automated process control systems, as well as identifying the causes of anomalies. The object of the study is to identify anomalies during the operation of technological equipment, units, installations, individual industries - identifying attacks on a sensor or group of sensors. The main models of machine learning are considered, allowing to identify anomalies that can arise during attempts of external influence, as well as during technological malfunctions of industrial production. The model considered is AutoEncoder. The prediction accuracy of the applied ML model is assessed. Read more
|
3 |
Использование моделей глубокого обучения для обнаружения аномалий в логах в процессе разработки программного обеспечения : магистерская диссертация / Utilizing deep learning models to detect log anomalies during software developmentДивенко, А. С., Divenko, A. S. January 2024 (has links)
Данная работа посвящена применению моделей глубокого обучения для решения этой проблемы в процессе разработки программного обеспечения. Разработан стенд для имитации процесса разработки ПО, на котором были сгенерированы синтетические данные логов из различных сервисов. Объединение разнородных логов позволило создать реалистичный набор данных со скрытыми зависимостями для более сложной задачи поиска аномалий. На созданном наборе данных были применены модели глубокого обучения DeepLog, LogAnomaly и LogBERT. Для каждой модели выполнено обучение и оценка эффективности обнаружения аномалий на тестовой выборке. Разработанный стенд может усложняться и использоваться для дальнейших исследований в области применения глубокого обучения к задаче поиска аномалий в логах в процессе разработки ПО. / This paper focuses on the application of deep learning models to address this problem in the software development. A simulation framework was developed to imitate the software development by generating synthetic log data from different services. Combining heterogeneous logs allowed the creation of a realistic dataset with hidden dependencies for a more complex anomaly search task. DeepLog, LogAnomaly and LogBERT deep learning models were applied on the created dataset. For each model, training and evaluation of anomaly detection performance on a test sample was performed. The developed framework can be extended and used for further research in the application of deep learning to the task of searching for anomalies in logs during software development. Read more
|
4 |
Развитие методов и алгоритмов систем обнаружения и предотвращения вторжений на основе статистических методов и устойчивых алгоритмов машинного обучения : магистерская диссертация / Development of methods and algorithms for intrusion detection and prevention systems based on statistical methods and sustainable machine learning algorithmsПетросян, А. Г., Petrosyan, A. G. January 2024 (has links)
The study of vulnerabilities in intrusion detection systems (IDS/IPS) in algorithms based on statistical and machine learning methods is a relevant topic due to the constant growth of cyber threats in the present time, the need to protect data privacy, the application of the latest technologies and the prevalence of the use of machine learning methods in the field of information security. The practical significance of the study is as follows: the results of the study will allow to identify vulnerabilities in intrusion detection systems (IDS/IPS), which helps to improve the overall level of security of information systems; the study of algorithms based on statistical and machine learning methods will allow to develop new methods of protection against attacks and implement them in existing IDS/IPS systems; the obtained results can be used to train information security specialists, which helps to improve the level of security of information systems. / Исследование уязвимостей систем обнаружения и предотвращения вторжений (IDS/IPS) в алгоритмах, основанных на статистических методах и методах машинного обучения, является актуальной темой в силу постоянного роста киберугроз в нынешнее время, необходимости защиты конфиденциальности данных, применения новейших технологий и распространенности использования методов машинного обучения в области информационной безопасности. Практическая значимость исследования заключается в следующем: результаты исследования позволяют выявить уязвимости в системах обнаружения и предотвращения вторжений (IDS/IPS), что способствует повышению общего уровня безопасности информационных систем; изучение алгоритмов, основанных на статистических методах и методах машинного обучения, позволяет разработать новые методы защиты от атак и внедрить их в существующие IDS/IPS; полученные результаты могут быть использованы для обучения специалистов по информационной безопасности, что способствует повышению уровня квалификации и подготовки кадров в данной области. Read more
|
5 |
Извлечение и классификация признаков из набора данных окулографии методами машинного обучения : магистерская диссертация / Feature extraction and classification from an oculography dataset using machine learning methodsКолосов, И. В., Kolosov, I. V. January 2024 (has links)
В современном мире машинное обучение и анализ данных широко применяются в науке и технике, в том числе в медицинской диагностике и исследовании окуломоторной активности. Окулография, изучающая движения глаз, становится всё популярнее в медицинских областях, включая неврологию. В работе описывается процесс извлечение и классификация признаков из окулографических данных двух групп риска испытуемых с целью выявления наличия заболевания дислексии с использованием различных подходов и методов машинного обучения. / In modern world, machine learning and data analysis are widely used in science and technology, including in medical diagnostics and research of oculomotor activity. Oculography, studying eye movements, becomes more and more popular in medical fields, including neurology. This work describes the process of extracting and classifying features from oculographic data of two risk groups of subjects in order to detect the presence of dyslexia using various machine learning approaches and methods.
|
6 |
Обнаружение аномалий на основе данных трассировки и журналов в процессе разработки программного обеспечения с использованием машинного обучения : магистерская диссертация / Anomaly Detection Based on Trace Data and Logs in Software Development Using Machine LearningКатин, В. В., Katin, V. V. January 2024 (has links)
Целью данной работы является разработка программного обеспечения для генерации данных журналов и трассировки ИТ систем, а также создание модели машинного обучения для обнаружения аномалий в подобных данных. Объектом исследования являются процессы мониторинга и управления IT-операциями. В работе исследуются методы машинного обучения и анализа данных для обнаружения аномалий в реальном времени. Были разработаны тестовый стенд для генерации событий журналов и трассировок, а также алгоритм для анализа и обнаружения аномальных событий, что позволяет оптимизировать процессы управления IT-операциями и повысить надежность систем. Результаты могут быть использованы в дальнейших работах по теме поиска аномалий в данных журналов и данных трассировки ИТ систем. / The aim of this work is to develop software for generating log and trace data of IT systems, as well as to create a machine learning model for detecting anomalies in such data. The object of the research is the processes of monitoring and managing IT operations. The study explores machine learning methods and data analysis for real-time anomaly detection. A test bench was developed for generating log and trace events, along with an algorithm for analyzing and detecting anomalous events, which optimizes IT operations management processes and improves system reliability. The results can be used in further work on the topic of anomaly detection in log and trace data of IT systems. Read more
|
Page generated in 0.0172 seconds