• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94950
  • 44430
  • 27785
  • 17303
  • 7729
  • 5753
  • 4255
  • 2323
  • 2323
  • 2323
  • 2323
  • 2323
  • 2316
  • 1498
  • Tagged with
  • 46102
  • 15541
  • 11667
  • 10903
  • 8640
  • 8037
  • 8023
  • 6116
  • 6111
  • 5305
  • 5225
  • 5169
  • 5082
  • 5018
  • 4722
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

The Evolution of Dwarf-Irregular Galaxy NGC 1569: A Kinematic Study of the Stars and Gas

Johnson, Megan C 01 December 2011 (has links)
The evolution and formation of dwarf galaxies has great importance to our knowledge of cosmological history from the Big Bang through the present day structure we observe in our local universe. Dwarf galaxies are believed to be the "building blocks" of larger galaxies, which implies that interactions and mergers of these small systems must have occurred frequently in the early universe. There is a population of starburst dwarf irregular (dIm) galaxies that seem to have characteristics indicative of interactions or mergers. One of these dIm galaxies is the nearby post-starburst NGC 1569. This dissertation project explores the stellar and gas kinematics of NGC 1569 as well as examines a deep neutral Hydrogen (HI) map made using the Robert C. Byrd Green Bank Telescope (GBT). From these observations, this dissertation analyzes the evolution of NGC 1569 by understanding the three-dimensional shape of this dIm system for the first time. The structure of dIm galaxies is an important fundamental, physical property necessary to understand the evolution and formation of these common systems. However, the intrinsic shape of dIm galaxies remains controversial. Projected minor-to-major axis ratios provide insucient data to determine the shapes of dIm galaxies. Fortunately, there is another method by which accurate structures can be measured. The stellar velocity dispersion, coupled with the maximum rotational velocity derived from HI observations, gives a measure of how kinematically hot a system is, and, therefore, indicates its structure. In this dissertation, we present the stellar kinematics, including the stellar velocity dispersion, of NGC 1569 obtained using the Kitt Peak National Observatory (KPNO) Mayall 4-m+Echelle spectrograph. These data are combined with an in depth analysis of high resolution HI data and a discussion of the nature of this starburst dwarf system. The dissertation concludes with a deep HI map of NGC 1569 and three of its nearest neighbors in the IC 342 galaxy group. Extended HI structures are observed in this map and are likely associated with NGC 1569. However, distinguishing if these structures are from an interaction or a merger is not possible and hydrodynamic simulations are needed. These simulations are for future work.
322

Calculated Vibrational Properties of Quinones in Photosynthetic Reaction Centers

Lamichhane, Hari Prasad, Lamichhane, Hari Prasad 14 December 2011 (has links)
This dissertation presents a detailed computational investigation into the vibrational properties of quinones involved in solar energy conversion processes in photosynthetic reaction centers. In particular, we focus on the vibrational properties of the ubiquinone molecule that occupies the QA binding site in purple bacterial photosynthetic reaction centers. To provide a foundation upon which to base computational studies of pigments in protein binding sites density functional theory based calculations of the vibrational properties of neutral ubiquinone in the gas phase and in solvent were undertaken. From single point energy calculations it was shown that at least eight ubiquinone conformers, each with slightly different FTIR spectra, could be present in solvent at room temperature. The calculated and experimental spectra for neutral ubiquinone in solution are very different from the spectra associated with ubiquinone in the QA binding in purple bacterial reaction centers. For this reason an ONIOM method was undertaken in which the pigment was treated using density functional theory based methods while the protein was treated using molecular mechanics. The ONIOM calculations not only modeled the experimental QA FTIR difference spectra but also resolved the long standing issue of whether a very strong hydrogen bond exists between the bound ubiquinone and the imidazole nitrogen of a histidine residue (HisM219). To further validate the usefulness of the ONIOM approach experimental isotope edited FTIR spectra obtained using purple bacterial reaction centers with a range of chainless symmetrical quinones incorporated were modeled. Again, the agreement between the calculated and experimental spectra is outstanding. We also modeled the vibrational properties of the ubisemiquinone anion radical both in solvent and in the QA binding site. Vibrational modes of ubisemiquinone display a greater degree of mixing of the various molecular groups of the molecule. Nonetheless the calculated FTIR spectra for ubisemiquinone in solution and in the QA site agree very well with that found experimentally. Vibrational frequencies of ubisemiquinone obtained from ONIOM calculated Raman spectra also agree very well with that found in experimental resonance Raman spectra associated with the ubisemiquinone anion radical in the QA binding site.
323

Optical Properties of In1-xGaxN Epilayers Grown by HPCVD

Wang, Jielei, Ms 23 August 2010 (has links)
Optical absorption spectroscopy has been applied to study properties such as the fundamental absorption edge and defect absorption centers of group III-nitride compound semiconductor epilayers. The investigation in this thesis focused on analyzing the band gap of indium-rich In1-xGaxN epilayers, which where grown by the high-pressure chemical vapor deposition (HPCVD) technique. Our results - together with literature data for gallium-rich In1-xGaxN alloys indicate that the shift of the fundamental band gap of In1-xGaxN with composition x can be described with a bowing parameter of b = 2.2eV. Temperature dependent transmission measurements show that the band gap variation with temperature follows a S-shape behavior for small gallium concentration and shifts towards a Varshni type behavior for a higher gallium concentrations. The S-shape behavior is attributed to nanoscale compositional fluctuations/clustering in the ternary alloy system. The thicknesses of the measured In1-xGaxN epilayers have been analyzed through multilayer stack model calculations of the transmission spectra. The free electron concentration in the In1-xGaxN epilayers has been obtained from simulations of infrared reflectance spectra.
324

New Correlation Effects in Nonrelativistic Atomic Photoionization in the High Energy Limit

Yang, Chieh Jen 08 August 2005 (has links)
The effect of initial state correlation on high-energy dipole photoionization is considered and it is shown that for almost all atomic electron the asymptotic high-energy dependence is E-7/2, and the dominant transition is an ionization plus excitation satellite transition. This is demonstrated in numerical calculations of the photoionization of Ge4p2 1S and Sn 5p2 1S.
325

MINIMO: A Search for Mini Proper Motion Stars in the Southern Sky

Finch, Charlie Thomas 03 May 2007 (has links)
I report 1684 new proper motion systems in the southern sky (declinations -90 degrees to -47 degrees) with 0.50 arcsec/yr > mu >= 0.18 arcsec/yr. This effort is a continuation of the SuperCOSMOS-RECONS (SCR) proper motion search to lower proper motions than reported in Hambly et al. (2004); Henry et al. (2004); Subasavage et al. (2005a,b). Distance estimates are presented for the new systems, assuming that all stars are on the main sequence. I find that 34 systems are within 25 pc, including three systems --- SCR 0838-5855, SCR 1826-6542, and SCR 0630-7643AB --- anticipated to be within 10 pc. These mini-motion (MINIMO) discoveries constitute a more than ten-fold increase in new systems found in the same region of sky searched for systems with mu >= 0.50 arcsec/yr, suggesting a happy hunting ground for new nearby slower proper motion systems in the region just north (declinations -47 degrees to 0 degrees), much of which has not been rigorously searched during previous efforts.
326

SLOWMO: A Search for Nearby Stars

Brown, Misty Adana 03 December 2007 (has links)
I report on suspected nearby stars with proper motions 1.0 arcsec > μ ≥ 0.5 arcsec/yr in the southern sky (DEC = −90° to 00°). This sample of slow-motion (SLOWMO) stars complements the work of Jao (2004), who reported on faster moving stars with μ ≥ 1.0 arcsec/yr in the entire sky for his doctoral dissertation, and the work of Finch (2007), who uncovered stars moving slower than 0.5 arcsec/yr between declinations −90° and −47°. Characterizations of SLOWMO systems include trigonometric parallaxes, optical and infrared photometry. For stars without trigonometric parallaxes, colors and apparent magnitudes are used to calculate photometric distance estimates and the statistics of this population of stars are analyzed. The SLOWMO sample is comprised of 1906 total stars − 560 estimated to be less than 25 parsecs away, and 245 stars without parallaxes estimated to be within 25 parsecs.
327

Short-Wave Infrared Diffuse Reflectance of Textile Materials

Haran, Terence 17 November 2008 (has links)
This thesis analyzes the reflectance behavior of textiles in the short-wave infrared (SWIR) band (1 – 2 microns) in order to identify/design potential diagnostic tools that allow the remote detection of human presence in a scene. Analyzing the spectral response of fabrics in the SWIR band has gained significant interest in the remote sensing community since it provides a potential path to discriminate camouflaged clothing from backgrounds that appear similar to the object of interest in the visible band. Existing research, originating primarily from the textiles community, has thoroughly documented the behavior of clothing fabrics in the visible band. Other work has shown that the differences in spectral response in the SWIR band allows for discrimination of materials that otherwise have the same visible spectral response. This work expands on those efforts in order to quantify the reflectance behavior and to better understand the physical basis for that behavior.
328

Duty Cycle Maintenance in an Artificial Neuron

Barnett, William Halbert 01 October 2009 (has links)
Neuroprosthetics is at the intersection of neuroscience, biomedical engineering, and physics. A biocompatible neuroprosthesis contains artificial neurons exhibiting biophysically plausible dynamics. Hybrid systems analysis could be used to prototype such artificial neurons. Biohybrid systems are composed of artificial and living neurons coupled via real-time computing and dynamic clamp. Model neurons must be thoroughly tested before coupled with a living cell. We use bifurcation theory to identify hazardous regimes of activity that may compromise biocompatibility and to identify control strategies for regimes of activity desirable for functional behavior. We construct real-time artificial neurons for the analysis of hybrid systems and demonstrate a mechanism through which an artificial neuron could maintain duty cycle independent of variations in period.
329

Analysis of GaN/AlxGa1−xN Heterojunction Dual-Band Photodetectors Using Capacitance Profiling Techniques

Byrum, Laura E. 01 December 2009 (has links)
Capacitance-voltage-frequency measurements on n+-GaN/AlxGa1−xN UV/IR dual-band detectors are reported. The presence of shallow Si-donor, deep Si-donor, and C-donor/N-vacancy defect states were found to significantly alter the electrical characteristics of the detectors. The barrier Al fraction was found to change the position of the interface defect states relative to the Fermi level. The sample with Al fraction of 0.1 shows a distinct capacitance-step and hysteresis, which is attributed to C-donor/N-vacancy electron trap states located above the Fermi level (200 meV) at the heterointerface; whereas, the sample with Al fraction of 0.026 shows negative capacitance and dispersion, indicating C-donor/N-vacancy and deep Si-donor defect states located below the Fermi level (88 meV). When an i-GaN buffer layer was added to the structure, an anomalous high-frequency capacitance peak was observed and attributed to resonance scattering due to hybridization of localized Si-donor states in the band gap with conduction band states at the i-GaN/n+-GaN interface.
330

Measuring the Effective Wavelength of CHARA Classic

Bowsher, Emily Collins 22 April 2010 (has links)
This thesis presents an engineering project measuring the effective wavelength of the CHARA Classic beam combiner on the CHARA Array. Knowing the actual effective wavelength of light observed is very important because that value is necessary for determining astrophysical parameters of stars. Currently, the value used for CHARA Classic data comes from a model of the system and is based on numbers published by the manufacturer of the filter; it is not derived from measurements done on the system directly. We use two data collection methods to observe standard stars of different spectral types and calculate the wavelength of light recorded by the instrument for each star. We find the best estimate of the effective wavelength for the CHARA Classic K′-band configuration to be 2.138±0.003μm, a 0.56% decrease from the previously adopted value of 2.150μm. Our result establishes the first estimate of the uncertainty in the effective wavelength.

Page generated in 0.1611 seconds