• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94950
  • 44430
  • 27785
  • 17303
  • 7729
  • 5753
  • 4255
  • 2323
  • 2323
  • 2323
  • 2323
  • 2323
  • 2316
  • 1498
  • Tagged with
  • 46102
  • 15541
  • 11667
  • 10903
  • 8640
  • 8037
  • 8023
  • 6116
  • 6111
  • 5305
  • 5225
  • 5169
  • 5082
  • 5018
  • 4722
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

First Science with JouFLU

Scott, Nicholas Jon 17 December 2015 (has links)
Jouvence of FLUOR (JouFLU) is a major overhaul of the FLUOR (Fiber Linked Unit for Optical Recombination) beam combiner built by the Laboratoire d’études spatiales et d’instrumentation en astrophysique (LESIA) and installed at the CHARA Array. These upgrades improve the precision, observing efficiency, throughput, and integration of FLUOR with the CHARA Array as well as introduce new modes of operation to this high-precision instrument for interferometry. Such high precision observations with FLUOR have provided the first unambiguous detections of hot dust around main sequence stars, showing an unexpectedly dense population of (sub)micrometer dust grains close to their sublimation temperature, 1400 K. Competing models exist to explain the persistence of this dust; some of which suggest that dust production is a punctuated and chaotic process fueled by asteroid collisions and comet infall that would show variability on timescales of a few years. By re-observing stars from the exozodiacal disks survey we have searched for variations in the detected disks. We have found evidence that for some stars the amount of circumstellar flux from these previously detected exozodiacal disks, or exozodis, has varied. The flux from some exozodis has increased, for some the flux has decreased, and for a few the amount has remained constant. These results are intriguing and will be no doubt useful for future modeling of this phenomenon. Furthermore, long-term monitoring is suggested for some of these objects to confirm detections and determine the rate of variation.
352

Measurement of the Double Helicity Asymmetry in Inclusive π0 Production in Polarized Proton-Proton Collision at Center of Mass Energy of 510 GeV.

Guragain, Hari 17 December 2015 (has links)
One of the biggest quests in nuclear and particle physics in the last three decades is to unravel the spin structure of hadrons like protons and neutrons. Spin not only plays a central role in the strong force connecting the elementary constituents of matter, but is also responsible for many of its fundamental properties including the magnetic moment which defines the magnetic properties, the different phases in low temperature physics, and the stability of the universe in general. The origin of the spin of particles like protons and neutrons, which make up to 99.9% of the visible universe, has been the focus of experimental and theoretical efforts. Experiments at European Muon Collaboration (EMC) found that our knowledge of how the spin of the nucleon is derived from its elementary constituents is naive, and our interpretations are not valid. This was termed the spin crisis, an outstanding puzzle for more than three decades and is still not solved. Deciphering the spin puzzle requires knowing the spin of elementary constituents of these particles, quarks and gluons. One of the major objectives of the Relativistic Heavy Ion Collider (RHIC) spin program at Brookhaven National Laboratory is the measurement of the gluon helicity contribution to the proton spin via measuring the double helicity asymmetry (ALL) in various channels. In Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) we measure ALL in π0 meson production. The π0 meson is reconstructed through its di-photon decay channel. The photons are detected by the PHENIX Electromagnetic Calorimeter, which consists of lead glass and lead scintillator detectors and covers a rapidity of |η|< 0.35 and azimuthal angle of 180°. In this dissertation, the results of ALLin π0 production from the data collected in 2013 at center of mass energy = 510 GeV are presented. In 2013, the total integrated luminosity is 150 pb-1 which is almost ten times the total luminosity recorded in 2009 at center of mass energy = 200 GeV. Due to the increase in the center of mass energy and integrated luminosity, these measurements cover the Bjorken x range down to ~0.01. A non-zero ALL result is observed that is consistent with positive gluon polarization in the probed kinematics.
353

A Catalog of Cool Stars for Precision Planet Searches

Smith, Cassy 17 December 2015 (has links)
We present an equatorial (± 30◦ Decl.) sample of all known single (within 4′′) mid M-dwarfs (M2.5V-M8.0V) extending out to 10 pc. For this sample of 58 stars, we provide photometry, low dispersion optical (6000−9000 ̊A) spectra from which spectral types are determined, Hα equivalent widths, and gravity sensitive NaI indices. For 45 of these 58 stars, strict limits are placed on the presence of companions, based on precise infrared radial velocities. Our spectroscopic results indicate that on average, we rule out the existence of companions with masses of 1.5 MJUP or greater in 10 day orbital periods around slowly rotating (vsini < 6.5 km s−1) M-dwarfs. Similarly, strict limits are placed on the presence of companions to 53 out of the 58 stars with astrometry. Our astrometric results show that, on average, we rule out the presence of companions with masses greater than 9 MJUP with an orbital period of 8 years. These results establish these stars as the nearest set of single mid M-dwarfs. Two additional stars, GJ 867B and LHS 1610, were initially included in this program, but later discovered to be spectroscopic binaries (SB). The binary GJ 867BD is a wide (24.5') companion to the M2 dwarf GJ 867AC. With this discovery, the GJ 867 system (d =8.82 ± 0.08 pc) becomes one of only four quadruple systems with in 10 pc of the Sun and the only among these with all M-dwarf (or cooler components). To measure how the rotational velocities vary with spectral type, we assembled a list of all known single (within 3′′) mid M-dwarfs that have trigonometric parallaxes within 25 pc and reside between −30◦ and +65◦ Decl from the RECONS sample. From this list of 402 stars, only 169 stars have previously reported vsini values. We obtained spectroscopic measurements for an additional 75 stars. Of those, 17 have vsini values above our detection threshold of 3 km s−1. Our data are consistent with the trend of more low mass M-dwarfs having high projected rotational velocity values than high mass M-dwarfs.
354

Search for a Permanent Electric Dipole Moment of <sup>225</sup>Ra

Kalita, Mukut R. 01 January 2015 (has links)
The observation of a permanent electric dipole moment (EDM) in a non-degenerate system would indicate the violation of discrete symmetries of Time reversal (T) or combined application of Charge (C) and Parity (P) symmetry violation through the CPT theorem. The diamagnetic 225Ra atom with nuclear spin I=1/2 is a favorable candidate for an EDM search. Experimental sensitivity to its EDM is enhanced due to its high atomic mass and the increased Schiff moment of its octupole deformed nucleus. An experimental setup is developed where laser cooled neutral radium atoms are collected in a magneto-optical trap (MOT). The collected atoms are transported 1 meter with a far off-resonant optical dipole trap (ODT) and then the atoms are transferred to a second standing-wave ODT in an experimental chamber. The atoms are then optically polarized and allowed to Larmor precess in parallel and antiparallel electric and magnetic fields. The difference between the Larmor precession frequency for parallel and antiparallel fields is experimentally determined to measure the EDM. This thesis is about the first measurement of the EDM of the 225Ra atom where an upper limit of |d(225Ra)|<5.0*10-22 e cm (95\% confidence) is reached.
355

J Psi Measurement in Au+Au Collisions at sqrt (sNN) = 39 and 62.4 GeV

Sen, Abhisek 26 November 2012 (has links)
J/psi production is considered a very important probes for studying the properties of quark-gluon plasma (QGP). At the PHENIX experiment at Brookhaven National Laboratory, a large suppression of J/psi production in Au+Au collisions at 200 GeV center of mass energy as compared to the binary collision scaled p+p collisions was observed. The level of suppression is similar to that observed at other energies at CERN's SPS and LHC experiments. This work addresses the PHENIX J/psi measurements at sqrt{s_{NN}}= 39 and 62 GeV Au+Au collisions. These allow for the energy dependent J/psi suppression measurements in order to disentangle the important contributing factors of J/psi production. J/psi results over a wide range of center of mass energies (39-200 GeV) from PHENIX are discussed, in addition to a comprehensive comparison with other experiments.
356

Multiband Detectors and Application of Nanostructured Anti-Reflection Coatings for Improved Efficiency

Jayasinghe, J. A. Ranga C 20 December 2012 (has links)
This work describes multiband photon detection techniques based on novel semiconductor device concepts and detector designs with simultaneous detection of dierent wavelength radiation such as UV and IR. One aim of this investigation is to examine UV and IR detection concepts with a view to resolve some of the issues of existing IR detectors such as high dark current, non uniformity, and low operating temperature and to avoid having additional optical components such as filters in multiband detection. Structures were fabricated to demonstrate the UV and IR detection concepts and determine detector parameters: (i) UV/IR detection based on GaN/AlGaN heterostructures, (ii) Optical characterization of p-type InP thin films were carried out with the idea of developing InP based detectors, (iii) Intervalence band transitions in InGaAsP/InP heterojunction interfacial workfunction internal photoemission (HEIWIP) detectors. Device concepts, detector structures, and experimental results are discussed. In order to reduce reflection, TiO2 and SiO2 nanostructured thin film characterization and application of these as anti-reflection coatings on above mentioned detectors is also discussed.
357

Cross Section of Bottom Quark Production in p+p Collisions at √s= 500 GeV Using Like-Sign Dimuons at PHENIX

Patel, Laura B. 01 August 2013 (has links)
Lepton pairs resulting from the decay of heavy flavor mesons are an important tool to probe the hot and dense matter created in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider. Due to their large mass, heavy quarks are produced in the earliest stages of the collision and will, therefore, experience the full evolution of the system. The yield of heavy flavor mesons can be measured through their semi-leptonic decay channel by constructing like-sign and unlike-sign lepton pairs. Cross section measurements in p + p collisions provide a test of perturbative quantum chromodynamics (pQCD) theory in addition to a crucial baseline measurement to study the hot and cold nuclear matter effects present in heavy ion collisions. For the first time, the b¯b cross section in p+p collisions at √s = 500 GeV is measured. The results are based on the yield of high mass, like-sign dimuons measured in the PHENIX muon arm acceptance (1.2 < |y| < 2.2). The extrapolated total cross section is 25.2 ± 3.2 (stat) +11.4 -9.5 µb (sys). The cross section is comparable to pQCD calculation within uncertainties.
358

Transforming High School Physics With Modeling And Computation

Aiken, John M 01 December 2013 (has links)
The Engage to Excel (PCAST) report, the National Research Council's Framework for K-12 Science Education, and the Next Generation Science Standards all call for transforming the physics classroom into an environment that teaches students real scientific practices. This work describes the early stages of one such attempt to transform a high school physics classroom. Specifically, a series of model-building and computational modeling exercises were piloted in a ninth grade Physics First classroom. Student use of computation was assessed using a proctored programming assignment, where the students produced and discussed a computational model of a baseball in motion via a high-level programming environment (VPython). Student views on computation and its link to mechanics was assessed with a written essay and a series of think-aloud interviews. This pilot study shows computation's ability for connecting scientific practice to the high school science classroom.
359

Heterojunction Structures for Photon Detector Applications

Pitigala Kankanakage, Don Duleepa P 18 December 2013 (has links)
The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions, (2) J and H aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost solar energy conversion devices and near infrared photodetectors. (1)A GaAs/AlGaAs based structure with a graded AlGaAs barrier is found to demonstrate a photovoltaic responsivity of ~ 30mA/W (~ 450mV/W) at the wavelength of 1.8 mm at 300K. Additionally the graded barrier has enhanced the photoconductive response at 78 K, showing a responsivity of ~ 80mA/W with a D*=1.4×108 Jones under 1V bias at 2.7 mm wavelength. This is an approximately 25 times improvement compared to the flat barrier detector structure, probably due to the improved carrier transport, and low recapture rate in the graded barrier structure. However, these graded barrier devices did not indicate a photoresponse with photoconductive mode at 300K due to high shot noise. Additionally, two generation-recombination noise components and a 1/f noise component were identified. A series of GaAs/AlGaAs multilayer hetero-junction structures were tested as thermal detectors. A superlattice structure containing 57% Al fraction in the barrier and 3 × 1018 cm-3 p-doped GaAs emitter showed the highest responsivity as a thermal detector with a TCR of ~ 4% K-1, at 300K. (2)The photovoltaic properties of heterojunctions with J-/ H- aggregated dye films sandwiched between n– and p-type semiconductors were investigated for potential application as solar cells and IR detectors. Films of cationic dye Rhodamine-B-thiocyanate adsorbed on Cu2O substrate are found to form organized dye layers by self-assembled J- aggregation, resulting in large red-shifts in the photo -response. Additionally, cells sensitized with a pentamethine cyanine dye exhibited a broad spectral response originating from J- and H-aggregates. The photocurrent is produced by exciton transport over relatively long distances with significant hole-mobility as well as direct sensitized injection at the first interface. (3) A ZnO/PbS-QD/Dye heterostructure had enhanced efficiency compared to ZnO/Dye heterostructure as a solar cell. Furthermore, a ZnO/PbS-QD structure has demonstrated UV and NIR responses with 4×105V/W (390 nm) and 5.5×105 V/W (750 nm) under 1V bias at 300K.
360

Mixed methods Analysis of Undergraduate Quantum Mechanics: An Exploratory Case Study

Oakley, Christopher A. 18 December 2013 (has links)
One key goal of Physics Education Research is providing research-based instructional techniques and tools to help assess the complex learning goals associated with a mature understanding of physics. Characterizing faculty expectations is important to produce a comprehensive understanding of knowledge students should acquire before and during a quantum mechanics course (QMC). Semi-structured interviews have been conducted with faculty members and students entering a QMC in the Physics Program at a Large Public Research University (LPRU) in the Southeast. The interviews examine perspectives of different evaluation techniques, ideal preparation, course content, and expected conceptual models of students. A post-course survey was offered to the students that took the QMC in the Fall of 2012 and to those who completed the course in the past three years. The survey addressed similar questions on evaluation, course content, and preparation. Using Classical Content Analysis and Key-Words-In-Context coding methods, contradictions and similarities within and between faculty and student populations are presented. These results are presented in an effort to highlight predictors for success in the QMC, identify “common-core” perceptions, and strengthen course evaluation. In all data, findings suggest that student perceptions shift towards those of faculty over the course of the QMC. Evaluation data indicate that on average the faculty members, like students, are open to a varied array of evaluation techniques, if it is within the goals of the course and does not interfere with other faculty responsibilities. In perceptions of preparation and course content, faculty have a uniform perspective of what should be prerequisite, and the student survey data strongly recommend that the second semester of Linear Algebra offered at the LPRU will help with the mathematical complexities of the QMC. Through triangulation of qualitative and quantitative results contradictions of preparation and content are exhibited through multiple media for the use course content such as the Hamiltonian.

Page generated in 0.2254 seconds