• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95347
  • 44430
  • 27795
  • 17332
  • 7731
  • 5764
  • 4255
  • 2334
  • 2334
  • 2334
  • 2334
  • 2334
  • 2327
  • 1502
  • Tagged with
  • 46194
  • 15617
  • 11711
  • 10959
  • 8678
  • 8061
  • 8056
  • 6133
  • 6130
  • 5305
  • 5257
  • 5179
  • 5117
  • 5033
  • 4744
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Application of many-body theory methods to atomic problems.

Dinh, Thi Hanh, Physics, Faculty of Science, UNSW January 2009 (has links)
There is strong interest in atomic and nuclear physics to the study of superheavy elements by the search for the island of stability in the region Z=104 to Z=126. There are many experimental efforts and theoretical works devoted to these study in measuring the spectra and chemical properties. In this thesis, calculations of the spectra and the hyperfine structure of some superheavy elements have been performed in an attempt to enrich our knowledge about the elements and even may help in their detection. We perform the high-precision relativistic calculations to determine the spectra of the superheavy element Z=119 (eka-Fr) and the singly-ionized superheavy element Z=120+ (eka-Ra+). Dominating correlation corrections beyond relativistic Hartree-Fock are included to all orders in the residual electron interaction using the Feynman diagram technique and the correlation potential method. The Breit interaction and quantum electrodynamics radiative corrections are considered. Also, the volume isotope shift is determined. We present the relativistic calculations for the energy levels of the superheavy element Z=120. The relativistic Hartree-Fock and configuration interaction techniques are employed. The correlations between core and valence electrons are treated by means of the correlation potential method and many-body perturbation theory. We also try to address the absence of experimental data on the electron structure and energy spectrum of the Uub element (Z=112) by calculating its energy levels. The relativistic Hartree-Fock and configuration interaction methods are combined with the many-body perturbation theory to construct the many-electron wave function for valence electrons and to include core-valence correlations. The hyperfine structure constants of the lowest s and p1/2 states of superheavy elements Z=119 and Z= 120+ are calculated. Core polarization, dominating correlation, Breit and quantum electrodynamic effects are considered. The dependence of the hyperfine structure constants on nuclear radius is discussed. Measurements of the hyperfine structure combined with our calculations will allow one to study nuclear properties and distribution of magnetic moment inside nucleus. Finally, we discuss the possibility of measuring nuclear anapole moments in atomic Zeeman transitions and perform the necessary calculations. Advantages of using Zeeman transitions include variable transition frequencies and the possibility of enhancement of parity nonconservation effects.
522

A universe of sky and snow: site-testing for optical astronomy at Dome C, Antarctica

Kenyon, Suzanne Laura, Physics, Faculty of Science, UNSW January 2007 (has links)
The unique advantages for astronomy on the Antarctic plateau are now well established. In particular, Dome C, Antarctica is potentially one of the best new sites for optical, infrared and sub-millimeter astronomy, presenting the opportunity to build unique astronomical instruments. Located high on the Antarctic plateau, Dome C offers low wind, clear skies, and negligible precipitation. This thesis addresses three additional properties of the site relevant to optical astronomy-sky brightness, atmospheric extinction and optical turbulence. The sky at an optical astronomy site must be dark, and the atmosphere very clean with minimal light extinction. At present little is known from an astronomer's perspective about the optical sky brightness and atmospheric extinction at most Antarctic sites. The high latitude of Dome C means that the Sun spends a relatively small amount of time far below the horizon, implying longer periods of astronomical twilight and less optical dark time than other sites, especially those close to the equator. We review the contributions to sky brightness at high-latitude sites, and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites, and review optical extinction data from the South Pole. A proposal to extend the amount of usable dark time through the use of polarising filters is examined, and we present the design and calibration of an instrument (called Nigel) to measure the brightness, spectrum and temporal characteristics of the twilight and night sky. The atmospheric turbulence profile above an astronomical site limits the achievable resolution and sensitivity of a telescope. The atmospheric conditions above high plateau Antarctic sites are different to temperate sites; the boundary layer of turbulence is confined very close to the surface, and the upper atmosphere turbulence very weak. We present the first winter-time turbulence profiles of the atmosphere above Dome C, and characterise the site in terms of the achievable precision for photometry and astrometry, and the isoplanatic angle and coherence time for the adaptive optics.
523

Probing variations in the fundamental constants with quasar absorption lines

Murphy, Michael T., Physics, Faculty of Science, UNSW January 2002 (has links)
Precision cosmology challenges many aspects of fundamental physics. In particular, quasar absorption lines test the assumed constancy of fundamental constants over cosmological time-scales and distances. Until recently, the most reliable technique was the alkali doublet (AD) method where the measured doublet separation probes variations in the fine-structure constant, ???? e2/??c. However, the recently introduced many-multiplet (MM) method provides several advantages, including a demonstrated ???10-fold precision gain. This thesis presents detailed MM analyses of 3 independent Keck/HIRES samples containing 128 absorption systems with 0.2 &gt zabs &gt 3.7. We find 5.6 ?? statistical evidence for a smaller ?? in the absorption clouds: ????/?? = (-0.574 ?? 0.102) x 10-5. All three samples separately yield consistent, significant ????/??. The data marginally prefer constant d??/dt rather than constant ????/??. The two-point correlation function for ?? and the angular distribution of ????/?? give no evidence for spatial variations. We also analyse 21 Keck/HIRES Si iv doublets, obtaining a 3-fold relative precision gain over previous AD studies: ????/?? = (-0.5 ?? 1.3) x 10-5 for 2.0 &gt zabs &gt 3.1. Our statistical evidence for varying ?? requires careful consideration of systematic errors. Modelling demonstrates that atmospheric dispersion is potentially important. However, the quasar spectra suggest a negligible effect on ????/??. Cosmological variation in Mg isotopic abundances may affect ????/?? at zabs &gt 1.8. Galactic observations and theory suggest diminished 25;26Mg abundances in the low metallicity quasar absorbers. Removing 25;26Mg isotopes yields more negative ????/?? values. Overall, known systematic errors can not explain our results. We also constrain variations in y ?? ?? 2gp, comparing H i 21-cm and millimetrewave molecular absorption in 2 systems. Fitting both the H i and molecular lines yields the tightest, most reliable current constraints: ??y/y = (-0.20??0.44)x10-5 and (-0.16??0.54)x10-5 at zabs = 0.2467 and 0.6847 respectively. Possible line-ofsight velocity differences between the H i and molecular absorbing regions dominate these 1 ?? errors. A larger sample of mm/H i comparisons is required to reliably quantify this uncertainty and provide a potentially crucial check on the MM result.
524

A study of aerosol optical and physical properties in Darwin, Australia

Bouya, Zahra, Physics, Faculty of Science, UNSW January 2008 (has links)
This thesis presents the analysis and results of aerosol physical and optical properties over Darwin, Australia, a coastal tropical site which is affected by smoke aerosols from biomass burning inland and sea salt aerosols brought in by the sea breeze. Continuous Multi Filter Rotating Shadow Radiometer (MFRSR) spectral measurements for the period March 2002 -June 2003, have been obtained from the Tropical Western Pacific facilities site in Darwin, part of the D.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program. Atmospheric optical thickness was obtained using the Langley regression analysis and aerosol optical thickness was then obtained by removing the molecular and ozone contributions from the total atmosphere optical thickness. A regression analysis was performed on the aerosol optical thickness and the Angstrom exponent to identify the trends in seasonality. It shows a strong seasonal cycle with low optical thickness in autumn and high optical thickness in spring, coinciding with the peak of the biomass burning season. The aerosol optical thickness data were inverted using the Constrained Linear Inversion technique to obtain the size distributions. A novel method, combining several different criteria, was used for classification of the size distribution into classes which could be related to biomass burning aerosols and sea salt aerosols. These classes showed variations with season and meteorological parameters. The wind diurnal cycle showed a significant signature on the aerosol size and loading, and the aerosol loading was also strongly linked to fire activity. The aerosols observed over Darwin reflected different proportions of biomass and sea salt and variations in size over the whole year. The seasonal pattern in the aerosol properties over Darwin is found to be owing to the location of Darwin in the Tropical Warm Pool and the variety of aerosol types: smoke particles produced by the dry season burning conditions, and the sea salt aerosols associated with the introduction of cleaner maritime westerly and northwesterly winds. Aerosols are also affected by the high rainfall rate during the wet season, which washes out the aerosols from the atmosphere.
525

Analysis of the demagnetisation process and possible alternative magnetic treatments for naval vessels

Baynes, Timothy Malcolm, Physics, Faculty of Science, UNSW January 2002 (has links)
Naval submarines and surface ships are regularly subjected to a treatment called &quotdeperming&quot that seeks to design the vessel???s permanent magnetisation for optimal magnetic camouflage. A scaled model of a magnetic treatment facility (MTF) has been established as a valid system to simulate deperming and used to investigate various aspects of the deperm process including: magnetic anisotropy and demagnetising fields as factors in the physical modelling of magnetism in whole vessels; a comparison of current and alternative deperm procedures; the application of theoretical models of bulk magnetisation to calculate deperm outcomes in the physical model and in actual vessels. A &quotlaboratory MTF&quot was constructed to imitate the applied field geometry at a naval MTF. The system was calibrated and it was determined that the laboratory MTF could make magnetic measurements on a CU200T-G steel bar sample with an equivalent accuracy (error = ??5%) to that of standard magnetometric equipment. Experiments were conducted with emphasis on a holistic approach to modelling the deperm process and describing magnetisation changes in whole objects. The importance of the magnetic anisotropic changes to steel with cold rolling was confirmed. In CU200T-G steel sheet the initial susceptibility (ci) was found to increase by a factor of 3 ??0.1 in the rolling direction, from a value of ~ 110 in the un-rolled steel sheet (thickness dependent). ci in the rolled sheet transverse to the rolling direction was decreased by a factor of 0.94 ??0.09 to ci in the un-rolled sheet steel. Previous studies on hull steel have neglected to account for this transformation through cold work. The demonstration on mild steel here is expected to have an analogy in the final state of the hull sheet steel as it resides in a submarine pressure hull. Future studies either on hull material or on modelling whole vessels should include the same or similar magnetic anisotropic properties in the steel(s) under investigation. Hollow circular tubes made from CA2S-E and CU200T-G steel sheet were selected as models for vessels. It was shown that these steel tubes were a good choice in this regard: minimising the complexity of the experiment whilst maintaining the validity of a deperm simulation. During a deperm there was an excellent qualitative likeness in the permanent longitudinal magnetisation (PLM) for the steel tubes to PLM in both a submarine and a surface vessel. Permanent vertical magnetisation (PVM) deperm results from the tubes displayed a close qualitative match with PVM in a submarine but not in a surface vessel. A theoretical treatment for demagnetisation factors (Nd) in hollow ellipsoids was used in conjunction with a geometrical approximation to calculate Nd for finite hollow objects of revolution. Subsequent theoretical calculations correlated well with experimental results for measured effective ci (ceff) in hollow circular CU200T-G steel tubes of various lengths and aspect ratios. Using an estimate of 100 as ci for submarine hull steel, the same analysis produces Nd for the axial and transaxial directions in a submarine equal to 5.97??10-3 and 0.0142 respectively. Three items for potential improvement were identified in the current deperm protocol used on naval vessels (Flash-D): redundancy in the protocol; the duration of the deperm and a theoretical basis for predicting the final magnetisation or changes in magnetisation during a deperm. Simulations of a novel &quotanhysteretic deperm&quot method, designed to combat these issues, compared favourably to the Flash-D protocol. The standard deviation (s) of the final PVM from 30 Flash-D deperms on steel tubes was 206 A/m; for the final PVM from 30 anhysteretic deperms of the same duration, this was 60 A/m. The s for the final PLM for Flash-D and anhysteretic deperms of the same duration were 416 A/m and 670 A/m respectively. The conclusion is that adopting the anhysteretic deperm on actual vessels would improve the reliability of the PVM outcome. Though the procedure would demand the same duration as Flash-D, there is the advantage of saving time by not having to repeat deperms to obtain the desired result. Additionally the anhysteretic deperm is considerably more amenable to theoretical analysis. A modified version of Langevin???s equation was used to predict the final PLM and PVM results for anhysteretic deperms and to provide a useful analysis of the anhysteretic processes in the Flash-D procedure. Using a Preisach analysis of hysteresis, a mathematical description of bulk magnetic changes that occur to a specific object, within a deperm, has been developed. Theoretical calculations of PLM in a steel tube during and after both types of deperm are in excellent agreement with experimental data. The same theoretical approach was also used to retrospectively model PLM results from previous Flash-D deperms on a submarine with equal success. With this analysis it is proposed that anhysteretic deperm outcomes could be predicted a priori. The influence of magnetic cargo on hull magnetisation was demonstrated to be of significance during and after deperming. &quotSympathetic deperming&quot occurs where a magnetic source is located close to the hull during a deperm. It was found that a vessel or model vessel hull could still be demagnetised even when they contain magnetic cargo that would normally resist the direct application of the same magnetic fields. This was explained using the principles of demagnetising fields and anhysteretic magnetisation. A possible explanation was provided for a PVM measurement anomaly common to the model and vessel deperm results. From measurement, alternating longitudinal applied fields apparently induce corresponding changes in the PVM. This effect could be explained by the depermed object being offset longitudinally from the position expected by the measurement system. This offset could be estimated using an analysis of the changes to PLM and PVM after a longitudinal applied field. The offset displacements calculated for the vessels were too small to be verified experimentally (&gt 0.1m), but the predicted offset for the steel tubes coincided with the limit of precision for their placement in the laboratory MTF = 0.5mm The aim of this work was to look at the deperm process with reference to a system that demonstrated qualitative similarities to deperms on actual vessels. The laboratory MTF is a unique facility, permitting a useful practical analysis of deperming based on sound magnetostatic measurements The experimental and theoretical results gained here have direct application to future deperms on naval vessels with particular reference to submarines.
526

Single-electron transistors for detection of charge motion in the solid state

Brenner, Rolf, Physics, Faculty of Science, UNSW January 2004 (has links)
This work investigates advanced single-electron transistor (SET) devices for detection of charge motion in solid-state systems. In particular, novel, nanoscale twin-SET and double-island SET (DISET) detectors are introduced as sensitive charge detectors. Some advantages over conventional SET detectors in terms of noise performance, sensitivity and versatility are pointed out. With the prospect of present, transistor-based microelectronics facing serious limitations due to quantum effects and heat dissipation, alternative computing paradigms ??? such as quantum computers, quantum-dot cellular automata and single-electronics ??? have emerged, promising an extension of highlevel integration and computing power beyond the above limitations. The most promising proposals are based on solid-state systems, and readout of a computational result often requires ultra-sensitive charge detectors capable of sensing the motion of single charges on fast timescales. SETs have been shown to combine all these qualities. However, random fluctuations of the background charge in solid-state systems can affect SETs and cause errors during readout. A twin-SET detector is presented that consists of two independent SETs, which were used to detect controlled single electron transfers on a small, floating metal double-dot. By cross-correlating the two SET signals, rejection of random charge noise is successfully demonstrated, thus decreasing the error probability during readout. Detection of single-electron transfer in a double-dot is also demonstrated using a double-island SET. In addition, conductance suppression in this novel DISET detector allows the detection of electrostatically degenerate charge con- figurations of a double-dot, which cannot be achieved with single-island SETs. We consider the noise performance of the DISET, and an intuitive definition of the DISET charge sensitivity suggests that under certain conditions, DISETs can have a better charge sensitivity than conventional SETs, which would be attractive for quantum limited measurements. Finally we present the first study of a DISET operated at radio-frequencies (rf-DISET), compatible with charge detection on ms timescales. This capability is a prerequisite when reading out the charge state of quantum mechanical systems. A very good charge sensitivity (5.6 x 10i6 e/pHz) and noise temperature (2.1 K) of the rf-DISET setup are reported.
527

Investigations into static multileaf collimator based intensity modulated radiotherapy

Williams, Matthew John, Physics, Faculty of Science, UNSW January 2005 (has links)
Intensity Modulated Radiation Therapy (IMRT) is a modern radiotherapy treatment technique used to obtain highly conformal dose distributions. The delivery of IMRT is commonly achieved through the use of a multileaf collimator (MLC). One of the hindrances at present to the widespread use of IMRT is the increased time required for its planning, delivery and verification. In this thesis one particular method of MLC based IMRT, known as Static Multileaf Collimator based IMRT (SMLC-IMRT), has been studied along with methods for improving it???s delivery efficiency. The properties of an MLC commonly used in SMLC-IMRT have been characterised. The potential ramifications of these properties on the dosimetric accuracy of the delivered IMRT field were also investigated. An Interactive Leaf Sequencing (ILS) program was developed that allowed for the manipulation and processing of intensity maps using a variety of methods. The objective of each method was to improve the delivery efficiency whilst maintaining the dosimetric quality of the IMRT treatment. The different methods investigated were collimator angle optimisation, filtration, and intensity level optimisation. The collimator was optimised by identifying the angle at which the minimum monitor unit???s (MU???s) were required when using a sliding-window delivery method. A Savitzky-Golay filter was applied to random intensity maps and suitable filtration parameters identified for filtering clinical IMRT fields, and the intensity levels were optimised based on a deviation threshold. The deviation threshold identified the acceptable level of difference tolerable between the original and modified intensity map. Several IMRT cases were investigated and the impact of each the methods on MU???s, segments and dose distribution observed. As the complexity of IMRT fields increases the dosimetric impact of the MLC properties increases. Complex SMLC-IMRT fields require longer delivery times due to the increased number of MU???s and segments. Collimator optimisation was shown to be a fast and effective means of improving delivery efficiency with negligible dosimetric change to the optimised plan. Modifying intensity maps by applying a filter and optimising the intensity levels did reduce the complexity and improve the delivery efficiency, but also required a dosimetric compromise of the optimised plan.
528

Measurements of optical turbulence on the Antarctic Plateau and their impact on astronomical observations.

Travouilon, Tony, Physics, Faculty of Science, UNSW January 2005 (has links)
Atmospheric turbulence results taken on the Antarctic plateau are presented in this thesis. Covering two high sites: South Pole and Dome C, this work describes their seeing and meteorological conditions. Using an acoustic sounder to study the turbulence profile of the first kilo- metre of the atmosphere and a Differential Image Motion Monitor (DIMM) to investigate the integrated seeing we are able to deduce important at- mospheric parameters such as the Fried parameter (r0) and the isoplanatic angle (??0). It was found that at the two sites, the free atmosphere (above the first kilometer) was extremely stable and contributed between 0.2" and 0.3" of the total seeing with no evidence of jet or vortex peaks of strong turbulence. The boundary layer turbulence is what differentiates the two sites. Located on the Western flank of the plateau, the South Pole is prone to katabatic winds. Dome C on the other hand is on a local maximum of the plateau and the wind conditions are amongst the calmest in the world. Also linked to the topography is the vertical extent of the temperature in- version that is required to create optical turbulence. At the South Pole the inversion reaches 300 m and only 30 m at Dome C. This difference results in relatively poor seeing conditions at the South Pole (1.8") and excellent at Dome C (0.27"). The strong correlation between the seeing and the ground layer meteorological conditions indicates that even better seeing could be found at Dome A, the highest point of the plateau. Having most of the turbulence near the ground is also incredibly ad- vantageous for adaptive optics. The isoplanatic angle is respectively 3.3" and 5.7" for the South Pole and Dome C. This is significantly larger than at temperate sites where the average isoplanatic angle rarely exceeds 2". This means that wider fields can be corrected without the complication of conjugation to specific layers. For such purpose the potential is even more interesting. We show that ground conjugated adaptive optics would decrease the natural seeing to 0.22" for a wide field of 10 and 0.47" for a field of 1" at the South Pole. At Dome C the results are less impressive due to the already excellent seeing, but a gain of 0.1&quote can still be achieved over 1&quote. These results show that high angular resolution observations can be done better on the Antarctic plateau than any other known site.
529

The violin music acoustics from baroque to romantic.

McLennan , John Ewan, Physics, Faculty of Science, UNSW January 2008 (has links)
A Baroque violin was initially made. It was then incrementally converted to a Romantic (modern) setup by replacing the short neck with a longer, more slender neck and adding a longer ebony fingerboard, a heavier bassbar and soundpost. This increased the total mass from 386 to 440 g. Several different Baroque and modern configurations, with baroque and modern style bows, were used for acoustical measurements and playing tests with professional violinists. Chladni patterns were similar in both versions and also when the bridge was placed below the soundholes. The Baroque version gave higher body mode frequencies than the Romantic. Placing the bridge below the soundholes lowered the frequency of the 800 Hz resonance to 600 Hz. Saunders Loudness Tests showed a response that varied strongly over the body resonances. For the transition from Baroque to Romantic setup, hand bowing showed an increase of 1 dB and machine bowing about 5 dB. The compliance of the body added to the air lowered the main air resonance by 5 Hz, equivalent to adding about 130 cc to the 2000 cc air volume. The top plate stiffness measured at the bridge feet was about 10 kN/m higher at the treble foot than at the bass foot, for all locations of the soundpost outside the treble foot. The stiffness at the bass foot remained constant. This was reversed when the soundpost was placed between the two feet: the stiffness at the treble foot was then lower than at the bass foot. The rocking and bounce frequencies of the bridge were lowered from 3000 and 6000 Hz respectively to about 2.5 and 3 kHz when fitted to the violin. Thinning the bridge waist lowered the rocking frequency. Recordings of performances on the violin were made for many combinations of physical state (baroque or romantic), type of string and bow, position of bridge, and others. Long-term average spectra for these recordings are compared here, and an online appendix includes these recordings in a way that allows them to be readily compared: www.phys.ul1sw.edu.au/music/people/mclennanappendix.html
530

Biological effects of GSM mobile phone microwave radiation: an investigation of gene expression

Blood, Alan, Physics, Faculty of Science, UNSW January 2005 (has links)
There is evidence that athermal radiofrequency radiation can alter Heat Shock Protein (HSP) expression or protein phosphorylation, or alter MAP kinase signalling. Effects of long-term exposure in brain tissue due to repeated HSP perturbation (eg an inhibition of apoptosis) have been hypothesised (French et al, 2001). This study aimed to investigate the RNA expression profile (12,000 genes) and HSP family protein expression levels after either acute 1-hour or chronic 4-day intermittent exposures to simulated GSM radiation in a human primary fibroblast model. The results found minimal or no effects of GSM. Flasks were exposed to 900 MHz (217 Hz modulation) at 0.18 W/kg SAR within a Transverse Electromagnetic Mode chamber (TEM cell). Cultures rested for 2 hours before exposures. Affymetrix U95A microarray analysis of a single pilot set of experiments showed that about 40 genes were reported as upregulated &gt=2.5 fold in each condition. There was no evidence of altered expression of any MAPK-associated genes. Target genes reported in both conditions (CBFA2T1, ZNF148, ITGA1), and genes altered in one condition (CCS, PLEC1, BIRC5), and marginally altered HSP72 were selected for PCR analysis. No other members of the HSP family were altered. In three replicate experiments assayed by real-time PCR, six genes were either unchanged or showed randomly variable expression. However HSP72 RNA showed possible consistent slight upregulation of 1.37 +/- 0.21 in the chronic condition. Western immunoblots of HSP-60, -70, -72 and -V90 proteins showed no significant changes 5 hours after exposure. In preliminary studies using a serum starvation protocol, ERK-1 phosphorylation was unaltered after 5 or 30 minutes GSM (single experiments). When flasks were transiently cooled, ERK-1 phosphorylation was increased 20 minutes later, indicating a source of artefact in some protocols. An inflammatory challenge experiment with a low-dose of the cytokine IL-1???? found that acute GSM exposure post-challenge inhibited NF????B-mediated GRO???? induction by 1.5 fold (2 experiments). Preconditioning with mild heat induces transient inhibition of both NF????B signalling and apoptosis. Other studies indicate that EMF exposures similarly evoke cytoprotection. It is suggested that GSM evoked cytoprotective signalling in this inflammatory model.

Page generated in 0.1484 seconds