• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prolongement de revêtements analytiques / Extension of analytic covers

Lavoine, Landry 07 June 2016 (has links)
On s’intéresse dans cette thèse aux propriétés de prolongements des revêtements analytiques. La problématique se formule de la manière suivante. Soit X0 un domaine d’un espace complexe normal X1 et X’0 un revêtement analytique sur X0. Peut-on prolonger X’0 en un revêtement analytique sur X1 et comment le nombre de ses feuillets varie-t-il par rapport à celui de X’0 ?On montre au chapitre 1 un théorème de prolongement de type Thullen qui laisse le nombre de feuillets constant.Au chapitre 2, on prouve des résultats de prolongement où le nombre de feuillets du revêtement analytique peut diminuer. On s’intéresse également au cas où le nombre de feuillets initial est égal à 2. On donne enfin au troisième chapitre quelques exemples répondant aux questions dans différentes situations et qui montrent la rigidité des résultats obtenus. / This thesis deals with the extension properties of analytic covers. The general question can be stated as follows.Let X0 be a domain in a normal complex space X1 and let X’0 be an analytic cover over X0. Can X’0 be extended to an analytic cover X’1 over X1 ? What is the number of sheets of X’1 in comparison with that of X’0 ?We prove in chapter 1 a Thullen-type extension theorem where the number of the sheets is constant.In chapter 2 we give extension results of analytic covers showing that the degree of the sheets may decrease. In this chapter we also are interested by the extension of the 2-sheeted analytic covers. We give in the last chapter examples answering our questions in different situations.
2

Résolution avec régularité jusqu'au bord de l'équation de Cauchy-Riemann dans des domaines à coins et de l'équation de Cauchy-Riemann tangentielle en codimension quelconque

RICARD, Hélène 20 December 2002 (has links) (PDF)
Dans ce travail, nous nous intéressons principalement à l'étude de deux équations classiques : l'équation de Cauchy-Riemann dans certains domaines de ${\Bbb C}^n$ et l'équation de Cauchy-Riemann tangentielle dans certains domaines d'une sous-variété CR générique $q$-concave. L'étude, liée à chaque équation, consiste, dans un premier temps, à obtenir des résultats de résolution locale avec des solutions ayant des propriétés de régularité jusqu'au bord des domaines considérés. Dans le cadre complexe, la méthode de résolution consiste à construire explicitement une solution grâce à la théorie des représentations intégrales, théorie dont l'essor date des années 70 grâce aux résultats de H. Grauert, G.M. Henkin, I. Lieb et E. Ramirez. On en deduit ainsi des estimations ${\cal C}^k$ sur des domaines à coins $q$-convexes et $q$-concaves locaux. Dans le cadre CR, la résolution se déduit des résultats obtenus dans le cas complexe grâce à des outils d'algèbre homologique et de théorie des faisceaux découlant en particulier de travaux de A. Andreotti, G. Fredericks, C.D. Hill et M. Nacinovich. On obtient alors des résultats locaux de résolution du $\bar \partial _b$ pour des formes de classe ${\cal C}^\infty$ jusqu'au bord des domaines considérés. Ensuite, on utilise les résultats locaux ainsi que la méthode <> due à H. Grauert pour montrer des théorèmes globaux d'annulation, de finitude ou de séparation des groupes de cohomologie.

Page generated in 0.0321 seconds