• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transformations hyperboliques et courbes algebriques en genre 2 et 3

AIGON, Aline 19 September 2001 (has links) (PDF)
Le théorème<br />d'uniformisation de Poincaré-Koebe permet d'affirmer que toute<br />surface de Riemann compacte de genre $g>1$ est un quotient du<br />demi-plan de Poincaré par un groupe Fuchsien.<br /> D'un autre coté, une surface de Riemann est aussi une courbe algébrique<br />complexe. En genres 2 et 3, ces courbes peuvent toujours être<br />réalisées comme des courbes planes, i.e l'ensemble des zeros<br />d'une équation polynomiale homogène à coefficients complexes<br />$P(x,y,z)=0$.<br /><br />Dans cette thèse, on s'intéresse au lien explicite entre ces deux<br />descriptions pour les surfaces de genres 2 et 3 ayant des<br />automorphismes non-triviaux.<br /><br />En genre 2, on s'intéresse d'abords aux surfaces ayant une<br />involution non-triviale. On décrit la correspondance entre les<br />actions de deux groupes opérant l'un sur les structures<br />algébriques, l'autre sur les structures hyperboliques de ces<br />surfaces. La relation liant ces deux groupes permet d'interpréter<br />en terme de twists de Dehn et demi-twists les relations entre les<br />différents revêtements ramifiés au dessus de cinq points de<br />$\mathbb{P}^1(\mathbb{C})$, avec notamment une lecture sur les<br />équations de certains twists de Dehn. On fait une étude<br />similaire pour des surfaces ayant un automorphisme d'ordre 3. On<br />étudie ensuite des familles spéciales algébriques, définies par<br />moins de paramètres que l'espace ambiant (sans que cela<br />corresponde nécessairement à la présence d'automorphismes<br />supplémentaires). On s'intéresse enfin à des familles réelles.<br />On montre notamment que les différents groupes permettent<br />d'exprimer des relations algebrico-géométriques entre surfaces<br />ayant des types topologiques pour la partie réelle différents.<br /><br />En genre 3, nous étudions les relations entre les équations des<br />quatre revêtements doubles de genre 3 d'une courbe de genre 1,<br />ramifiés au dessus de quatre points donnés et montrons comment on<br />peut aussi en décrire la structure hyperbolique dans le cas où<br />ils sont pavés par deux hexagones hyperboliques droits.

Page generated in 0.1093 seconds