• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 4
  • Tagged with
  • 17
  • 17
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Decomposição de diferentes doses de palhada de cana-de-açúcar e seu efeito sobre o carbono do solo / Decomposition of different amounts of sugarcane trash and its effect in soil carbon

Sousa Junior, José Geraldo de Abreu 31 March 2015 (has links)
O objetivo desta pesquisa foi avaliar a decomposição de diferentes quantidades iniciais de palhada de cana-de-açúcar depositadas sobre o solo, sob diferentes práticas de manejo e determinar o acúmulo de carbono orgânico total (COT) neste solo ao longo de três cortes da cana. Para tanto, foram instalados três ensaios em lavoura de cana-de-açúcar no município de Piracicaba. No experimento 1 foram depositadas na entrelinha da cultura, sobre o solo, diferentes quantidades de palhada (3,5; 7; 14 e 21 Mg ha-1) e mais dois tratamentos na dose de 14 Mg ha-1 ora incorporada ao solo e ora irrigada com vinhaça. A perda de matéria seca e a composição da palhada remanescente foi avaliada em seis momentos ao longo de um ano. No experimento 2, utilizando-se os mesmos tratamentos do experimento anterior, foram instalados lisímetros de tensão para coleta da solução do solo e determinação do carbono orgânico dissolvido (COD) em 0,20 e 0,50 m de profundidade. Para determinação do COT em função das diferentes doses de palhada depositadas sobre o mesmo ao longo de 3 cortes da cana-de-açúcar, instalou-se o Experimento 3. Para que fosse detectada a entrada de carbono (C) em função do aporte destas doses de palhada ao longo dos 3 anos, o solo original da entrelinha da cana-de-açúcar foi substituído por um solo de uma área adjacente de mesma classe, que não era cultivado com cana-de-açúcar ha pelo menos 25 anos, por isso com baixo delta 13C (?13C). Esta técnica isotópica foi utilizada para determinar e quantificar a origem das entradas do C no solo ao longo dos anos em que foram aplicados os tratamentos. Os resultados deste trabalho sugerem que após um ano da deposição da palhada no campo a decomposição de 65% das maiores doses de palhada (14 e 21 Mg ha-1), chegam a ser de 24 a 39% superiores às menores doses (7 e 3,5 Mg ha-1 respectivamente). A dose 14 Mg ha-1 quando incorporada acelera ainda mais este processo, resultando numa decomposição final de 86%. Já a irrigação com vinhaça não favoreceu este processo. Em relação à composição da palhada remanescente, os tratamentos 14 Mg ha-1 incorporado e 21 Mg ha-1 resultaram no aumento mais expressivo do índice lignocelulósico. O monitoramento do COD a 0,5 m de profundidade durante 120 dias na estação chuvosa detectou a presença de C somente nos 45 dias iniciais da decomposição da palhada. O percentual de COD disponibilizado pela palhada foi inversamente proporcional a taxa de decomposição. O acompanhamento do acúmulo de C no solo ao longo de 3 anos de aporte de diferentes quantidades de palhada da cana-de-açúcar, mostrou um aumento significativo de 80% e 97% nas concentrações de COT nos 2,5 cm superficiais do solo onde as doses de 14 e 21 Mg ha-1 de palhada, haviam sido aplicadas, respectivamente / The objective of this research was to evaluate the decomposition of different initial quantities of sugarcane trash placed onto the soil under different management practices and determine the total organic carbon (TOC) accumulation in this soil over three years sugarcane cycle. Therefore, three experiments were installed in sugarcane area at Piracicaba. In experiment 1, different amounts of sugarcane trash (3.5, 7; 14 and 21 Mg ha-1) were placed between the rows, above the soil. Two additional treatments were installed with 14 Mg ha-1 dose: or incorporated into the soil or irrigated with vinasse. The dry matter losses and the composition of remaining sugarcane trash were evaluated six times over a year. In experiment 2, using the same previous treatments, lysimeters were installed to collect soil solution and to determine dissolved organic carbon (DOC) at 0.20 and 0.50 m depth. Experiment 3 was settled to determine the Carbon (C) derived from the different doses of deposited sugarcane trash. The C input derived from the straw doses after three years was detected replacing the original soil at sugarcane inter-row by a soil from an adjacent area not cultivated with sugarcane for at least 25 years, presenting a low delta 13C (?13C). This isotope technique was used to determine and quantify the origin of soil C input, after the treatments applied over the years. Results of this study suggest that one year after the deposition of the trash on soil, the higher doses (14 and 21 Mg ha-1) lost about 65% dry matter, a rate up to 24-39% higher than the lower doses (7 and 3.5 Mg ha-1 respectively). The 14 Mg ha-1 dose, when incorporated, accelerated this process, resulting in a total breakdown of 86%. However, vinasse irrigation did not favored this process. Regarding the composition of the remaining trash, the treatments of 14 Mg ha-1 incorporated to soil and the 21 Mg ha-1 resulted in the most significant increase in lignocellulosic index. The DOC monitoring at 0.5 m depth over 120 days in the rainy season detected the presence of C only during the initial 45 days of straw decomposition. The percentage of DOC available from sugarcane trash was inversely proportional to the decomposition rate. Carbon accumulation in the soil over 3 years, related to different amounts of sugarcane trash, showed a significant increase of 80% to 97% in TOC concentrations in the upper 2.5cm soil layer where the doses of 14 and 21 Mg ha-1 of trash were applied, respectively
12

Genesis and organic matter chemistry of sombric horizons in subtropical soils (Paraná State, Brazil) / Gênese e química da matéria orgânica de horizontes sômbricos em solos subtropicais (Paraná, Brasil)

Mariane Chiapini 31 January 2017 (has links)
Soil organic matter (SOM) plays an important role in the global carbon cycle. Therefore, it is important to understand the stability of SOM, which is related to several processes. Its intrinsic properties may be related to its stability, for example black carbon is considered to be relatively resistant to degradation. In most soils, the dark horizons coincide with the superficial layers or horizons due to the greater accumulation of organic matter, but in the southern states of Brazil, the presence of soils with dark subsurface horizons is frequently observed. The dark subsurface horizon of these soils are similar to a sombric horizon. Aspects about its origin, formation and preservation have not yet been fully elucidated. The objective of this work is to understand the formation of \'sombric\' horizons in soils of the region from Tijucas do Sul (Paraná, Brazil). Five soil profiles were described and collected, from which three originate from a toposequence and contained a \'sombric\' horizon (P1-P3), a reference soil that is representative of the area (P5) and an intermediate soil (P4) that showed morphology between the reference soil and the soils with a \'sombric\' horizon. To this end SOM is studied for its molecular composition by the pyrolysis technique coupled to gas chromatography and mass spectrometry (pyrolysis-GC-MS). In addition, 13C isotopic composition (δ13C) and phytolytic composition were studied in order to understand paleoclimatic conditions. These results will be related to past environmental conditions using 14C dating techniques, and supported by classical soil analysis. The samples of the horizons were submitted to the SOM chemical fractionation, generating two fractions: extractable fraction with NaOH (EXT) and residue (RES). The morphology of the profiles showed an intense biological activity in A horizons and a wide distribution of microfragments of charcoals. The lateral continuity of \'sombric\' horizons in toposequence soils was also observed, which differentiated them (P1-P3) from buried A horizons. The distribution of SOM in the fractions studied was the same for the five profiles studied: EXT> RES. Products related to wildfires such as polyaromatics (PAHs; BC) were found in all profiles, but in greater relative abundance in the \'sombric\' horizons, indicating a higher incidence of fire during the formation of these horizons and these compounds can be related to the maintenance of dark color of the \'sombric\' horizons. In relation to the paleoclimatic conditions it was observed that the dark subsurface horizons were developed during the Mid-Holocene under vegetation composed mainly by C4 grasses with shrubs, evidencing a drier climate corresponding to a higher fire incidence. / A matéria orgânica do solo (MOS) desempenha um papel importante no ciclo global do carbono. Portanto, é importante entender a estabilidade da MOS, que está relacionada a vários processos. As suas propriedades intrínsecas podem estar relacionadas com a sua estabilidade, por exemplo, o \"black carbon\" é considerado relativamente resistente à degradação. Na maioria dos solos, os horizontes escuros coincidem com as camadas ou horizontes superficiais devido ao maior acúmulo de matéria orgânica, mas nos estados do sul do Brasil, a presença de solos com horizontes subsuperficiais escurecidos é frequentemente observada. O horizonte subsuperficial escurecido destes solos assemelha-se a um horizonte sômbrico. Aspectos sobre sua origem, formação e preservação ainda não foram totalmente elucidados. O objetivo deste trabalho é compreender a formação de horizontes \'sômbricos\' em solos da região de Tijucas do Sul (Paraná, Brasil). Foram descritos e coletados cinco perfis de solo, dos quais três estão localizados em uma topossequência e continham um horizonte similar ao sômbrico (P1-P3), um solo de referência representativo da área (P5) e um solo intermediário (P4) que apresentou uma morfologia entre o solo de referência e os solos com horizonte \'sômbrico\'. Para este fim, a MOS foi estudada pela sua composição molecular através da técnica de pirólise acoplada à cromatografia gasosa e espectrometria de massa (pirólise-GC-MS). Além disso, estudou-se a composição isotópica 13C (δ 13C) e a composição fitolítica, a fim de compreender as condições paleoclimáticas que foram relacionados com as condições ambientais passadas usando técnicas de datação com 14C, e suportados pelas análises clássicas de solo. As amostras dos horizontes foram submetidas ao fracionamento químico MOS, gerando duas frações: fração extraível com NaOH (EXT) e resíduo (RES). A morfologia dos perfis mostrou uma intensa atividade biológica nos horizontes A e uma ampla distribuição de microfragmentos de carvão. Observouse também a continuidade lateral de horizontes \'sômbricos\' em solos da topossequência (P1-P3), diferenciando-os dos horizontes A enterrados. A distribuição da MOS nas frações estudadas pela pirólise foi a mesma para os cinco perfis: EXT> RES. Os produtos relacionados a incêndios florestais como os poliaromáticos (PAHs, BC) foram encontrados em todos os perfis, mas em maior abundância relativa nos horizontes sômbricos, indicando uma maior incidência de incêndio durante a formação destes horizontes. Os PAHs podem estar relacionados com a manutenção da cor escura dos horizontes \'sômbricos\'. Em relação às condições paleoclimáticas observou-se que os horizontes subsuperficiais escurecidos foram desenvolvidos durante o Holoceno Médio sob vegetação composta principalmente por gramíneas C4 com arbustos, evidenciando um clima mais seco correspondente a maior incidência de incêndio.
13

Decomposição de diferentes doses de palhada de cana-de-açúcar e seu efeito sobre o carbono do solo / Decomposition of different amounts of sugarcane trash and its effect in soil carbon

José Geraldo de Abreu Sousa Junior 31 March 2015 (has links)
O objetivo desta pesquisa foi avaliar a decomposição de diferentes quantidades iniciais de palhada de cana-de-açúcar depositadas sobre o solo, sob diferentes práticas de manejo e determinar o acúmulo de carbono orgânico total (COT) neste solo ao longo de três cortes da cana. Para tanto, foram instalados três ensaios em lavoura de cana-de-açúcar no município de Piracicaba. No experimento 1 foram depositadas na entrelinha da cultura, sobre o solo, diferentes quantidades de palhada (3,5; 7; 14 e 21 Mg ha-1) e mais dois tratamentos na dose de 14 Mg ha-1 ora incorporada ao solo e ora irrigada com vinhaça. A perda de matéria seca e a composição da palhada remanescente foi avaliada em seis momentos ao longo de um ano. No experimento 2, utilizando-se os mesmos tratamentos do experimento anterior, foram instalados lisímetros de tensão para coleta da solução do solo e determinação do carbono orgânico dissolvido (COD) em 0,20 e 0,50 m de profundidade. Para determinação do COT em função das diferentes doses de palhada depositadas sobre o mesmo ao longo de 3 cortes da cana-de-açúcar, instalou-se o Experimento 3. Para que fosse detectada a entrada de carbono (C) em função do aporte destas doses de palhada ao longo dos 3 anos, o solo original da entrelinha da cana-de-açúcar foi substituído por um solo de uma área adjacente de mesma classe, que não era cultivado com cana-de-açúcar ha pelo menos 25 anos, por isso com baixo delta 13C (?13C). Esta técnica isotópica foi utilizada para determinar e quantificar a origem das entradas do C no solo ao longo dos anos em que foram aplicados os tratamentos. Os resultados deste trabalho sugerem que após um ano da deposição da palhada no campo a decomposição de 65% das maiores doses de palhada (14 e 21 Mg ha-1), chegam a ser de 24 a 39% superiores às menores doses (7 e 3,5 Mg ha-1 respectivamente). A dose 14 Mg ha-1 quando incorporada acelera ainda mais este processo, resultando numa decomposição final de 86%. Já a irrigação com vinhaça não favoreceu este processo. Em relação à composição da palhada remanescente, os tratamentos 14 Mg ha-1 incorporado e 21 Mg ha-1 resultaram no aumento mais expressivo do índice lignocelulósico. O monitoramento do COD a 0,5 m de profundidade durante 120 dias na estação chuvosa detectou a presença de C somente nos 45 dias iniciais da decomposição da palhada. O percentual de COD disponibilizado pela palhada foi inversamente proporcional a taxa de decomposição. O acompanhamento do acúmulo de C no solo ao longo de 3 anos de aporte de diferentes quantidades de palhada da cana-de-açúcar, mostrou um aumento significativo de 80% e 97% nas concentrações de COT nos 2,5 cm superficiais do solo onde as doses de 14 e 21 Mg ha-1 de palhada, haviam sido aplicadas, respectivamente / The objective of this research was to evaluate the decomposition of different initial quantities of sugarcane trash placed onto the soil under different management practices and determine the total organic carbon (TOC) accumulation in this soil over three years sugarcane cycle. Therefore, three experiments were installed in sugarcane area at Piracicaba. In experiment 1, different amounts of sugarcane trash (3.5, 7; 14 and 21 Mg ha-1) were placed between the rows, above the soil. Two additional treatments were installed with 14 Mg ha-1 dose: or incorporated into the soil or irrigated with vinasse. The dry matter losses and the composition of remaining sugarcane trash were evaluated six times over a year. In experiment 2, using the same previous treatments, lysimeters were installed to collect soil solution and to determine dissolved organic carbon (DOC) at 0.20 and 0.50 m depth. Experiment 3 was settled to determine the Carbon (C) derived from the different doses of deposited sugarcane trash. The C input derived from the straw doses after three years was detected replacing the original soil at sugarcane inter-row by a soil from an adjacent area not cultivated with sugarcane for at least 25 years, presenting a low delta 13C (?13C). This isotope technique was used to determine and quantify the origin of soil C input, after the treatments applied over the years. Results of this study suggest that one year after the deposition of the trash on soil, the higher doses (14 and 21 Mg ha-1) lost about 65% dry matter, a rate up to 24-39% higher than the lower doses (7 and 3.5 Mg ha-1 respectively). The 14 Mg ha-1 dose, when incorporated, accelerated this process, resulting in a total breakdown of 86%. However, vinasse irrigation did not favored this process. Regarding the composition of the remaining trash, the treatments of 14 Mg ha-1 incorporated to soil and the 21 Mg ha-1 resulted in the most significant increase in lignocellulosic index. The DOC monitoring at 0.5 m depth over 120 days in the rainy season detected the presence of C only during the initial 45 days of straw decomposition. The percentage of DOC available from sugarcane trash was inversely proportional to the decomposition rate. Carbon accumulation in the soil over 3 years, related to different amounts of sugarcane trash, showed a significant increase of 80% to 97% in TOC concentrations in the upper 2.5cm soil layer where the doses of 14 and 21 Mg ha-1 of trash were applied, respectively
14

Stable Isotopes And Multiple Tissue Analysis: Reconstructing Life Histories For Individuals From Dakhleh Oasis, Egypt

Johns, Noel 01 January 2012 (has links)
Stable isotope analysis is often used to evaluate elements of the lives of past peoples, such as diet and health status, at a societal level. Analysis at an individual level is exceptionally rare, and has not been conducted using a variety of tissues representing both early life and life approximate to death. In this study, δ 13C and δ15N isotope signatures are used to create life histories for single individuals from Romano-Christian period Kellis 2 cemetery in the Dakhleh Oasis, Egypt. Samples are obtained from several different tissues, including tooth dentin, bone collagen, hair, nail, skin, and gut content, all of which have been previously researched, but have not been studied at such an individualistic level. By using data and previous research conducted by Drs. Tosha Dupras and Lana Williams, this research uses isotopic values from the aforementioned tissues, and the differing turnover rates of these tissues, to develop lifetime timetables for 15 individuals (female, male, and juvenile). Results show that individual analysis is possible, informative, and can enlighten researchers not just concerning the individual, but about the population as a whole. The methods presented can serve as a model for reconstructing individual life histories using isotope data from multiple tissues.
15

Impact du lignite sur les caractéristiques physico-chimiques et microbiologiques des sols : application aux sols du bassin minier de Provence / Impact of lignite on the physico-chemical and microbiological characteristics of soils : application to soils of mine basin of Provence

Clouard, Mélanie 18 December 2013 (has links)
Les terrils du bassin minier de Provence sont implantés dans le paysage et demeurent à proximité des habitations de la métropole Aix-Marseille. Les terrils les plus anciens ont été naturellement colonisés par la végétation et des sols s’y sont développés avec une vitesse remarquable. Cette étude vise à comprendre les processus pédogénétiques en cours depuis 55 ans sur les terrils miniers. Nous avons étudié l’impact du lignite sur les caractéristiques physico-chimiques et microbiologiques d’un Rendosol naturel. Deux sols similaires, dont l’un est traversé par l’affleurement naturel d’une veine de lignite et l’autre pas, ont donc été comparés afin de caractériser les variables impactées par le lignite. L’étude du terril Armand a permis de comprendre les facteurs responsables de la formation et de la variabilité des caractéristiques des sols observés sur le terril. L’abondance de composés carbonés récalcitrants dans les sols enrichis en lignite affecte les niveaux d’activité des microorganismes responsables des processus biologiques dans les sols sans induire d’effets néfastes. Le lignite semble intervenir comme un facteur de dilution du carbone organique, diminuant ainsi la quantité de carbone disponible et donc la vitalité d’expression des fonctions microbiennes. Les activités biologiques sont diminuées en présence de lignite, mais les changements induits sur les propriétés physico-chimiques semblent améliorer la fertilité du sol. Les sols du terril Armand demeurent cependant encore à un stade d’évolution trop jeune pour préjuger de leur évolution future. / Spoil heaps are scattered over the coal basin of Provence: they are inserted in the landscape and often located close to urban areas of the Aix-Marseille Metropole. The oldest spoil heaps have been naturally colonized by local vegetation and soils have simultaneously quickly developed. This study aims at understanding the processes involved in soil forming on undisturbed lignite-rich spoil heaps since 55 years. We studied the impact of lignite on the physico-chemical and microbiological characteristics of an undisturbed soil: we compared two similar Rendosols, except that one was developed in a natural lignite outcrop. Then we studied on the 55-year-old Armand spoil heap the factors responsible for soil genesis and variability of soil characteristics. Recalcitrant carbon compounds found in soils enriched with lignite modify microbial activity but do not induce negative effects. It seems that lignite acts as a diluting factor of the organic carbon that decreases the available carbon pool and consequently on the vitality of the expression of the microbial functions. Enzymatic activities and basal respiration decrease while changes observed on physico-chemical properties tend to improve soil fertility. Some characteristics of the soils developed on the spoil heap are similar to those of the soil developed from the lignite outcrop, while others are more related to the way the spoil heap was set up. Although these results have shed light on some of the processes involved in soil formation on spoil heaps in a carbonated environment, soils on Armand spoil heap are still at an early stage of development that precludes conclusion on their future evolution.
16

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.
17

Some Aspects of Arsenic and Antimony Geochemistry in High Temperature Granitic Melt – Aqueous Fluid System and in Low Temperature Permeable Reactive Barrier – Groundwater System

Guo, Qiang 30 January 2008 (has links)
Arsenic and antimony are important trace elements in magmatic-hydrothermal systems, geothermal systems and epithermal deposits, but their partitioning behavior between melt and aqueous fluid is not well understood. The partitioning of arsenic and antimony between aqueous fluid and granitic melt has been studied in the system SiO2-Al2O3-Na2O-K2O-H2O at 800 degree C and 200 MPa. The partition coefficients of As and Sb between aqueous fluid and melt, are 1.4 +- 0.5 and 0.8 +- 0.5, respectively. The partitioning of As is not affected by aluminum saturation index (ASI) or SiO2 content of the melt, or by oxygen fugacity under oxidized conditions (log fO2 > the nickel-nickel oxide buffer, NNO). The partitioning of Sb is independent of and SiO2 content of the melt. However, aluminum saturation index (ASI) does affect Sb partitioning and Sb partition coefficient for peralkaline melt (0.1 +- 0.01) is much smaller than that for metaluminous melts (0.8 +- 0.4) and that for peraluminous melts (1.3 +- 0.7). Thermodynamic calculations show that As(III) is dominant in aqueous fluid at 800 degree C and 200 MPa and XPS analysis of run product glass indicate that only As(III) exists in melt, which confirms the finding that does not affect As partitioning between fluid and melt. XPS analysis of run product glass show that Sb(V) is dominant in melt at oxidized conditions (log fO2 > -10). The peralkaline effect only exhibits on Sb partitioning, not on As partitioning at oxidized conditions, which is consistent with the x-ray photoelectron spectroscopy (XPS) measurements that As(III) and Sb(V) are dominant oxidation states in melt under oxidized conditions, because the peralkaline effect is stronger for pentavalent than trivalent cations. Permeable reactive barriers (PRBs) are an alternative technology to treat mine drainage containing sulfate and heavy metals. Two column experiments were conducted to assess the suitability of an organic carbon (OC) based reactive mixture and an Fe0-bearing organic carbon (FeOC) based reactive mixture, under controlled groundwater flow conditions. The organic carbon (OC) column showed an initial sulfate reduction rate of 0.4 μmol g(oc)-1 d-1 and exhausted its capacity to promote sulfate reduction after 30 pore volumes (PVs), or 9 months of flow. The Fe0-bearing organic carbon (FeOC) column sustained a relative constant sulfate reduction rate of 0.9 μmol g(oc)-1 d-1 for at least 65 PVs (17 months). The microbial enumerations and isotopic measurements indicate that the sulfate reduction was mediated by sulfate reducing bacteria (SRB). The cathodic production of H2 by anaerobic corrosion of Fe probably is the cause of the difference in sulfate reduction rates between the two reactive mixtures. Zero-valent iron can be used to provide an electron donor in sulfate reducing PRBs and Fe0-bearing organic carbon reactive mixture has a potential to improve the performance of organic carbon PRBs. The δ34S values can be used to determine the extent of sulfate reduction, but the fractionation is not consistent between reactive materials. The δ13C values indicate that methanogenesis is occurring in the front part of both columns. Arsenic and antimony in groundwater are great threats to human health. The PRB technology potentially is an efficient and cost-effective approach to remediate organic and inorganic contamination in groundwater. Two column experiments were conducted to assess the rates and capacities of organic carbon (OC) PRB and Fe-bearing organic carbon (FeOC) PRB to remove As and Sb under controlled groundwater flow conditions. The average As removal rate for the OC column was 13 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity was 11 μmole g-1 (dry weight of organic carbon). The remove rate of the FeOC material was 165 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity was 105 mole g-1 (dry weight of organic carbon). Antimony removal rate of the OC material decreases from 8.2 to 1.4 nmole day-1 g-1 (dry weight of organic carbon) and its removal capacity is 2.4 μmole g-1 (dry weight of organic carbon). The minimum removal rate of FeOC material is 13 nmole day-1 g-1 (dry weight of organic carbon) and its minimum removal capacity is 8.4 μmole g-1 (dry weight of organic carbon). The As(III) : [As(III)+As(V)] ratio increased from 1% in the influent to 50% at 5.5 cm from the influent end, and to 80% at 15.5 cm from the influent end of the OC column. X-ray absorption near edge spectroscopy (XANES) shows As(III)-sulfide species on solid samples. These results suggest that As(V) is reduced to As(III) both in pore water and precipitate as As sulfides or coprecipitate with iron sulfides. The arsenic reduction rate suggests that As(V) reduction is mediated by bacterial activity in the OC column and that both abiotic reduction and bacterial reduction could be important in FeOC.

Page generated in 0.0845 seconds