• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3832
  • 1071
  • 555
  • 368
  • 298
  • 198
  • 106
  • 81
  • 80
  • 62
  • 56
  • 52
  • 52
  • 52
  • 52
  • Tagged with
  • 8765
  • 2394
  • 1635
  • 1587
  • 1376
  • 1092
  • 990
  • 959
  • 942
  • 770
  • 757
  • 673
  • 662
  • 650
  • 612
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Adaption vorverarbeiteter Sprachsignale zum Erreichen der Sprecherunabhängigkeit automatischer Spracherkennungssysteme

Jaschul, Johannes. January 1900 (has links)
Thesis--Technische Universität München, 1982. / Bibliography: p. 141-143.
302

Pronunciation and spelling inconsistency effects in visual word recognition: investigating the feedback loop between orthography and phonology processing /

Tang, Bryan. January 2005 (has links) (PDF)
Thesis (B.A. (Hons.)) - University of Queensland, 2005. / Includes bibliography.
303

Monaural speech organization and segregation

Hu, Guoning. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2009 Mar 24
304

The effectiveness of semantic and syllabic cues for Cantonese aphasic patients with naming difficulties

Lee, Wai-ling, Janise. January 2001 (has links)
Thesis (B.Sc)--University of Hong Kong, 2001. / "A dissertation submitted in partial fulfilment of the requirements for the Bachelor of Science (Speech and Hearing Sciences), The University of Hong Kong, 4 May 2001." Also available in print.
305

Acoustic packaging the role of infant-directed speech in segmenting action sequences /

Tapscott, Stephanie L. January 2006 (has links)
Thesis (M.S.)--Villanova University, 2006. / Psychology Dept. Includes bibliographical references.
306

Die Erkennung eingebetteter Figuren : Effekte des perzeptiven Lernens und der Darbietungsreihenfolge der Aufgaben /

Ludwig, Ira, January 1999 (has links)
Diss.--Justus-Liebig-Universität--Giessen, 1998. / Bibliogr. p. 307-316.
307

Estimation of K-distribution parameters with application to target detection

Marhaban, Mohammad Hamiruce January 2003 (has links)
Probabilistic models have been used extensively in the past to underpin classification algorithms in statistical pattern recognition. The most widely used model is the Gaussian distribution. However, signals of impulsive nature usually deviate from Gaussian and it is necessary to work with more realistic models. K-distribution is one of the long-tailed density which is known in the signal processing community for fitting the radar sea clutter accurately. The work presented in this thesis reflects the efforts made to model the background features, extracted from the sea images, by using a K-distribution. A novel approach for estimating the parameter of K-distribution is presented. The method utilises the empirical characteristic function, and is proven to perform better than any existing estimation technique. A classifier is then developed from the empirical characteristic function. This technique is applied to a problem of automatic target recognition with promising results.
308

THE DEVELOPMENT AND EVALUATION OF TECHNIQUES FOR USE IN MAMMOGRAPHIC SCREENING COMPUTER AIDED DETECTION SYSTEMS

Kelsey, Matthew Douglas 01 May 2011 (has links)
The material presented in this dissertation details techniques developed to aid in the detection of a specific type of cancerous lesion visible on screening mammography images. These spiculated lesions most often appear as centrally bright objects with semi-defined borders. Furthermore, lesion margins are composed of indicative spiculations or fine tendrils projecting outward from the mass center. The techniques developed here to identify these characteristics and detect these objects are intended to operate as a processing pipeline. The first group of these processing stages is responsible for converting raw mammogram pixel data into localized and described objects. A second group of processing stages categorizes these objects by manipulating their descriptors and evaluating their meaning. At the conclusion of this processing pipeline, it is intended that image pixels which designate a cancerous mass will be highlighted and presented to a human operator as an aid in the early detection of breast cancers. The initial problem of object localization is addressed with breast tissue region extraction followed by a specialized spot detection algorithm. Tissue region extraction is accomplished using specific dataset image domain knowledge along with a simple threshold segmentation algorithm. Once this image area of interest is specified, contained objects of interest are identified using Iterative Disjoint Region Detection (IDRD). This specialized procedure utilizes iterative threshold segmentation to produce a three dimensional map of each image's pixel space. In this map, two dimensions directly correspond to the spatial dimension of the original image while the third corresponds to the normalized gray level of individual pixels. Traversing this map from the brightest pixel values to the darkest yields object "peaks", which are taken to be seeds of visible objects. Seeds are further processed at each successive threshold iteration by considering the effects of combining adjacent designations. This seeding process effectively detected all objects of interest with at least one seed. Because it was designed as a general purpose spot detection algorithm, many non-cancerous locally bright objects were detected as well. These other detections accounted for a wide majority of the seeds noted in each mammogram with approximately thirty to sixty seeds identified in most dataset images. A complementary task to object localization is the identification of each object's visible border and pixel area. This process is accomplished by a customized general purpose region growing routine, commonly known as pixel aggregation. During this procedure, spatially attached pixels are considered for inclusion with a prototype region defined by the region's corresponding seed object. Candidate pixels must meet a gray tone similarity criteria with our inclusion interval computed using the template region's average gray value. This process is supplemented by a leakage detection mechanism which serves to detect and recover from over segmentation of non-target objects in the image space. Leakage detection operates by tracking pixel aggregation rates for each iteration of the region growing process. A leakage is said to occur if the aggregation rate profile exhibits telltale characteristics of object border crossing followed by segmentation of an adjacent object. Once objects have been localized and their member pixels identified through the proceeding procedures it is the purpose of the next system stage to describe these objects using various measured features. The extraction of these measurements is the final step in transforming objects from image based visual depictions to abstract numerical representations. This new representation facilitates the forthcoming statistical treatment of these objects. Feature extraction is accomplished using a number of general use as well as special purpose measurements which quantify characteristics such as object shape, texture, and parent seed evolution. A total of forty-one feature measurements are extracted in order to insure full representation of detected objects and to facilitate accurate object class membership. In the next section of work, we seek to categorize these objects which have just been detected, segmented and described using feature measurements. The roll of a statistical classifier in accomplishing this is presented along with specifics as to the type of classifier used here. The use of a Bayes classifier is discussed and rationalized along with the development of the parametric Gaussian model for class conditional density estimation. Along with classifier development, a treatment of system performance evaluation is given. The Free-response Receiver Operating Characteristic (FROC) is described as an appropriate method by which to evaluate observer studies. This method suits the described CAD system, as a certain number of false positive detections are seen as acceptable and the system goal is to maximize mass sensitivity within these bounds. Our CAD system supplements the traditional classifier components by considering the effects of advanced feature vector manipulation. In total, five distinct models are developed including various iterations of feature selection and feature vector transformation. The Select model is presented as a benchmark and consists of a cumulative performance based feature selection step. The PCT Select and the DCT Select models are used to generate new feature vectors from the original measured set as linear combinations of its elements. PCT and DCT indicate the vector transformation model, Principle Components Transform and Discrete Cosine Transform respectively. Once transformed, the resultant feature vectors are processed with the same Select feature selection routine as in the benchmark model. The goal with both Transform-Select feature manipulation models is to generate a compact feature set which retains all of the necessary discriminatory information from measured features while rejecting measured characteristics which do not support accurate object classification. Two related models are also considered which measure the impact of implementing feature pre-selection on the PCT Select and the DCT Select models. The aptly named Select PCT Select and the Select DCT Select models seek to remove measured features which contain no discriminatory information from the pool of transformed data. System performance results for the five selection models are then compared to discern the contribution of each in the detection of cancerous masses. A complete analysis of the feature selection and transformation models show that while the benchmark Select model performs reasonably, considerable performance improvements are possible using feature vector manipulation methods. Performance metrics are generated with the use of a Free-response Receiver Operating Characteristic (FROC) plot. This method compares the mass detection sensitivity possible to the number of false positive detections per mammogram evaluated. Feature selection and classifier training is performed to maximized this sensitivity at a particular operating point, 4 FPpI. This point is taken as within the range of acceptable false indications in a typical clinical setting. Overall, the best system performance is seen with the use of the Select DCT Select feature model (84.51% sensitivity at 4 FPpI). This corresponds to a net increase of eighteen additional mass detections with the same amount of false positive indications and an increased mass sensitivity of 84.51% from 71.53% using the benchmark Select model. The other selection model using a pre-selection stage, Select PCT Select, reports similar performance results. This model is used to detect 118 true positive masses, sixteen more then the Select model and just two less then the Select DCT Select model. Both of the other system configurations, PCT Select and DCT Select, were able to detect 109 true masses in the data set. This corresponds to a 76.76% mass sensitivity at 4 FPpI. Although not as impressive as results generated with the pre-selection models, this is still a 5.23% improvement in mass sensitivity in comparison to the benchmark.
309

Some questions arising in connection with recognition

Fleming, Brice Noel January 1961 (has links)
No description available.
310

Expertise and the inversion effect

Thomas, Lisa M. January 2002 (has links)
It has often been argued that the processing of faces is 'special' relative to the processing of other objects and there is much evidence in support of this notion. One source of evidence is the inversion effect, which occurs when faces presented upright are recognised significantly better than faces presented upside down. This effect of stimulus inversion has been shown to impair face recognition to a greater extent than for any other object class. It is this disproportionate effect that has been given as one source of evidence that face processing is special. However, other research has argued that effects of inversion can be found for non-face stimuli providing that there is sufficient development of expertise with them and that these stimuli can be defined by a common prototype. This thesis further explores this idea. Inversion effects were investigated for both prototypically and non-prototypically defined, abstract, chequerboard stimuli and compared with those for faces. When subjects learned to categorise chequerboard stimuli that were defined by a common prototype equal size inversion effects were found to those observed for faces. However, inversion effects were not observed for category training with multiple exemplars of chequerboard stimuli that were not defined by a common prototype. Together the findings are consistent with the idea that inversion effects are a general phenomenon resulting from the acquisition of category expertise with any prototype defined stimulus category. They undermine the inversion effect as a source of evidence for the specialness of face processing. Further, using a new Moving Windows technique, additional experiments investigated the underlying mechanisms responsible for the effects of inversion found for faces and chequerboards. These showed that the diagnostic image regions searched differ across the two stimulus classes. However, on the basis of the results, it is argued that the inversion effects found for both could result from impaired processing of second-order configural information.

Page generated in 0.0941 seconds