• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 88
  • 68
  • 32
  • 23
  • 16
  • 12
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 512
  • 131
  • 72
  • 55
  • 53
  • 52
  • 46
  • 44
  • 43
  • 41
  • 40
  • 40
  • 37
  • 35
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Řízení 6-ti osého robota v RTOS / 6 axis robot control in RTOS

Václavek, Miroslav January 2009 (has links)
The thesis deals with the analysis, software design and the study of 3D kinematic model of robotic manipulator ROB 2-6. It creates the control software for this manipulator, containing user interface based on MFC applications. Moreover, the thesis is concentrated on the solution of various problems, e.g. non-linearity of servomotor or the limitation of manipulator´s attainability. Finally, it poses a documentation of the single project and offers new possibilities of further development in the control of this manipulator.
202

Experimentální robotizované pracoviště s delta-robotem / Experimental robotized workplace with delta-robot

Kozubík, Jiří January 2011 (has links)
This diploma thesis was written within Czech-German study programme Production systems (VUT v Brně & TU Chemnitz). This thesis is divided into four main parts. In the first part is brought out the introduction to design of robotic cells. Following part is concentrated on analysis of present state in area of machines with parallel kinematics. The penultimate part, on which is focused the main attention, is dedicated to kinematic analysis of delta-robot. Closing part of this Thesis presents the study of experimental robotized workplace with integrated delta-robot.
203

Modelování a řízení mobilních robotů s několika řízenými koly / Modelling and Control of Multi-Steered Wheeled Mobile Robots

Hrabec, Jakub January 2009 (has links)
Dizertační práce se zabývá problematikou kinematického modelování a řízení mobliních kolových robotů. Přináší sumarizaci problematiky kinematického modelování mobilních robotů obecně a popis vlastností kolových mobilních robotů s několika řízenými koly. Použitý aparát z matematiky, fyziky je vysvětlován s důrazem na pohled teorie řízení. Dále je prezentován nový řídicí algoritmus pro mobilní kolové roboty s více řízenými koly, vhodný pro úlohu stabilizace v bodě i sledování trajektorie, tedy obě nejčastěji řešené úlohy pohybu mobilních robotů.
204

A STUDY ON <i>APHONOPELMA SEEMANI</i> BIOMECHANICS OF MOTION WITH EMPHASIS ON POTENTIAL FOR BIOMIMETIC ROBOTICS DESIGN

Dana L Moryl (8796875) 04 May 2020 (has links)
<p>With a stable center of mass, pneumatic-aided movement, and the ability to scale multiple terrain types, the uniquely efficient and lightweight form of spiders has changed the way we think about robotic design. While the number of papers on arachnid biomechanics and spider-based biomimetic robots has been increasing in recent years, the style of analysis and the motion-types analyzed have barely changed since the 1980s. Current analyses are based on a force plate and treadmill design, in which the spider is induced into an escape run. This environmental change can affect the movements of the spider. Here I propose a novel method of testing the biomechanical and kinematic properties of spiders using a tank with a built-in sensor matrix which allows for a more natural environment for the specimens and provides force data from individual legs. The system detects a minimum force of .0196 N and has a sampling rate of 1,000 samples /second, which allows for the analysis of forces during the step. <i>Aphonopelma seemanni</i>, a tarantula commonly used in such research, but whose forces during movement have to date not been analyzed, was recorded walking across the matrix, and the forces, step patterns, joint angles, and center of mass deviations were recorded. Walking indicated significantly different step pattern traits than current literature, and forces per leg (.07281 N±.0235) recorded were much smaller than expected in comparison to other spiders. Statistical analysis also indicated no changes in walking movement over a range of temperatures, which also varies from literature. These findings indicate that further research on spiders should be done with respect to walking gaits in order to improve upon current biomimetic models. </p> <br>
205

Analýza pohybu hráčů ve volejbalovém utkání / Analysis of voleyball players' movement during the match

Hank, Mikuláš January 2015 (has links)
The primary task of this thesis was to evaluate, quantify and objectify distances of movement of elite volleyball players in terms of individual game specializations in the horizontal plane of motion. Secondarily, these values were mutually compared. For evaluation was used 3D kinematic motion analysis. Analyzed homogeneous group consisted of senior volleyball players at the Champions League level (n = 14; age = 25 ± 6 years; height = 182.3 ± 6.2 cm; weight = 72.1 ± 5.8 kg). Processing were four sets, a total of 167 rallies. The average distance one player absolved for 167 rally was 1259.89 meters in whole game, per rally, this value was 8.8 m. The movement of players was divided by a total of four directions relative to the volleyball net forward, backward, left and right. The results showed a high degree of homogeneity in the external load players and brought objective values for comparison between the players' specializations. Powered by TCPDF (www.tcpdf.org)
206

Kinematická analýza bežecké lokomoce dětí ve věku 6-8 let / Kinematic analysis of running in children aged 6 to 8 years

Hrachovcová, Monika January 2020 (has links)
This diploma thesis deals with the biomechanics of running and the kinematic analysis of running in children aged 6 - 8 years. The paper consists of two parts. The first part deals with the biomechanics of running and its development, running injuries and describes the kinematic analysis of running. The PubMed, the ScienceDirect Database and sources of the National Medical Library and of the Charles University were searched for creating this theoretical part. The second part describes the experiment - methods and its results. 70 children were recorded during overground running at spontaneous speed. The obtained video recording was measured using the Kinovea 0.8.12. program. The video was scrolled through frames and three moments of the stance phase (initial contact, midstance and moment toe-off) were detected. At these moments selected angles in the sagittal plane were analyzed. These angles were described in the terms of descriptive statistics. Certain characteristics subdivided the cohort into two groups. These were compared in kinematic parameters to determine statistically significant differences. The obtained values from the experiment are discussed and compared with the the values from the recent literature dealing with kinematics of running. At last the suggestions for further research are...
207

Distortional Lateral Torsional Buckling of Doubly Symmetric Wide Flange Beams

Arizou, Ramin 16 December 2020 (has links)
Distortional lateral-torsional buckling theories assume that the flanges remain undistorted, while the web is free to distort as a thin plate. Most theories adopt a cubic polynomial distribution along the web height to relate the lateral displacement of the web to the displacements and angles of twist both flanges. The present study develops a family of finite element solutions for the distortional buckling of wide flange beams in which the flanges are assumed to remain undistorted. In contrast to past theories, the lateral displacement distribution along the web height is characterized by superposing (a) two linear modes intended to capture the classical non-distortional lateral-torsional behavior and (b) any number of user-specified Fourier terms intended to capture additional web distortion. In the longitudinal direction, all displacement fields characterizing the lateral displacements are taken to follow a cubic distribution. The first contribution of the thesis develops a finite element formulation that is able to replicate the classical non-distortional lateral torsional buckling solutions when the distortional modes are suppressed while enabling more accurate predictions for distortional lateral torsional buckling compared to those solutions based on the conventional cubic interpolation of the lateral displacement. The formulation is used to conduct an extensive parametric study to quantify the reduction in critical moments due to web distortion relative to the classical non-distortional predictions in the case of simply-supported beams, cantilevers, and beams with an overhang. The solution is then used to generate interaction curves for beams with an overhang subjected to various proportions of uniformly distributed and point loads. The second contribution of the thesis adds two additional features to the formulation (a) to capture the destabilizing effect due to the load height relative to the shear center and (b) a module that incorporates any number of user-defined multi-point kinematic constraints. The additional features are employed to investigate the effect of load height, bracing height, and combined effects thereof in practical design problems. A distortional indicator is then introduced to characterize the distribution of web distortion along the beam span as the beam undergoes distortional lateral buckling. A systematic design optimization technique is then devised to identify the location(s) along the span at which the addition of transverse stiffeners would maximize the critical moment capacity.
208

Kinematic analysis of traumatic brain injuries in boxing using finite element simulations

Fan, Xuelong January 2016 (has links)
The purpose of the thesis was to analyze and evaluate the head injuries due to a striking in a boxing match by LS-DYNA. A simplified arm model was built up and was equipped with three segments which were linked with two spherical joints. The strain-stress curves of the boxing glove foam and glove leather were measured in the Neuronic Lab in School of Technology and Health, KTH. The dimension and weight of the model was also set as adjustable to fulfill various requirements in different cases. Then a method was developed to facilitate the simulation. Finally, 39 video clips from the database were processed and the 13 cases were chosen to test the method and to perform the simulations. Additionally, the reliability of the model was assessed by comparing the outcome of the simulations with the results of the visual analysis from a previous study. The outcome showed that the model was able to restore the scenario from the videos both quantitatively and qualitatively, but it also suggest a high sensitivity of the model to the data artifacts from the video analysis. Interpretations and suggestions for the future work were also discussed.
209

The Effect of Arm Swing and Rocky Surface on Dynamic Stability In Healthy Young Adults

Mezher, Cézar 04 September 2020 (has links)
There are millions of fall-related injuries worldwide requiring medical attention on a yearly basis. These falls place a financial burden on the healthcare system. These falls can occur in the event of disruption in the postural control system and/or a loss of balance while walking. Previously, most gait studies have focused on the assessment of the lower extremities while neglecting the contribution of arm swing as it was believed to be a passive motion. However, it has been shown that there is an active component to arm swing. Moreover, these arm movements have been shown to affect the motion of the center of mass when walking. Therefore, arm swing could mitigate the destabilizing effects of perturbations caused by challenging surfaces. Additionally, no studies have examined the effect of arm swing when walking on a rocky surface. This type of surface causes perturbations in the anteroposterior and mediolateral directions simultaneously, leading to uneven center of mass displacement and spatiotemporal modifications. Hence, the present study assessed the effect of normal arm swing, held arm swing and active arm swing on postural control and dynamic stability when walking on regular and rocky surface. We hypothesized that active arm swing will have a negative impact on postural control and gait dynamics on a regular surface, while rocky surface walking will decrease stability and increase spatiotemporal variability. Additionally, we expect active arm swing to attenuate the negative effects of the rocky surface. Fifteen healthy young adults from the University of Ottawa community (mean age 23.4 ± 2.8 years) were recruited to participate in this study. They were asked to walk using three different arm conditions (normal, held and active arm swing) on the dual-belt CAREN-Extended System (Motek Medical, Amsterdam, NL) on simulated regular and rocky surface. This last is generated using the “Rumble” module (maximum range of ±2 cm at 0.6 Hz vertically, ±1° at 1 Hz pitch, and ±1° at 1.2 Hz roll). Mean, standard deviation and maximal values of trunk linear and angular velocity were calculated in all three planes. Moreover, step length, time and width mean and coefficient of variation as well as margin of stability mean and standard deviation were calculated. A mixed linear model was performed to compare the effects of the arm swing motions and surface types. The arm and surface conditions were set as fixed effects, while the walking speed was set as a covariate. Active arm swing increased trunk linear and angular velocity variability and peak values compared to normal and held arm conditions. Active arm swing also increased participants’ step length and step time, as well as the variability of margin of stability. Similarly, rocky surface walking increased trunk kinematics variability and peak values compared to regular surface walking. Furthermore, rocky surface increased the average step width while reducing the average step time. The spatiotemporal adaptations show the use of “cautious” gait to mitigate the destabilizing effects of both the active arm swing and rocky surface walking and, ultimately, maintain stability.
210

Structural and Kinematic Evolution of Eocene-Oligocene Grasshopper Extensional Basin, Southwest Montana

Kickham, Julie C. 01 May 2002 (has links)
The Grasshopper basin of southwest Montana is a complex east-dipping graben containing five unconformity-bounded sequences of Tertiary sedimentary rocks. The Eocene-Oligocene basin lies within the northern Rocky Mountain Basin and Range province. Geologic mapping in five and a half 7.5 minute quadrangles indicates that at least three distinct phases of extension characterize the Cenozoic tectonic evolution of Grasshopper basin from approximately 46 Ma toMa. The significant phases of extension in Grasshopper basin were phases 1 and 3. During the first phase of extension (46-27 Ma) the nonplanar Muddy-Grasshopper fault was initiated and 90% of the basin fill was deposited. At least 7 km of dip-slip displacement along this fault controlled the deposition of the Medicine Lodge beds (3.5 km thick) and development of a transverse fold train and a longitudinal anticline. The second phase of extension (late Eocene-early Oligocene) resulted in northwest-southeast trending extensional structures and was probably coincident with deformation along the Lemhi Pass fault (20 km to the southwest). The third phase of deformation (early Oligocene-middle Miocene) dismembered the once larger protobasin into smaller subbasins and tilted the northwest-dipping limb of the longitudinal anticline. The structures formed during this phase have north-south and northeast trends. Little sediment was deposited during phases 2 and 3. Overall >85% E-W extension accrued. Extensional folds are common in Grasshopper basin and formed during all three phases of extension. One orthogonal fold set was recorded. Two-dimensional kinematic analysis of the longitudinal Bachelor Mountain anticline shows that this fold is a double-­rollover that probably developed above a longitudinal ramp in the Muddy-Grasshopper fault. The transverse folds are the result of the changing strike of the downward­-flattening Muddy-Grasshopper fault. A transverse syncline developed above a convex up part of the fault whereas a transverse anticline formed above a concave up part of the fault that reflects changes in the strike of the fault. Three-dimensional inclined shear probably created this geometry.

Page generated in 0.0571 seconds