• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 117
  • 72
  • 19
  • 15
  • 12
  • 10
  • 10
  • 3
  • 1
  • Tagged with
  • 463
  • 463
  • 88
  • 68
  • 55
  • 33
  • 32
  • 30
  • 30
  • 30
  • 29
  • 29
  • 28
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME): Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME)

Schöllner, Jessica 25 August 2015 (has links)
Modification of the radiation response of oral mucosa (mouse) by inhibition of nitric oxide synthase via nitro-L-arginin-methyl-ester (L-NAME)
372

Modifikation der Strahlenreaktion der Mundschleimhaut (Maus) durch Hemmung der Stickstoffmonoxid-Synthase mittels nitro-L-Arginin-Methyl-Ester (L-NAME)

Schöllner, Jessica 25 August 2015 (has links)
Die Mucositis enoralis ist eine häufige und dosislimitierende Nebenwirkung der Strahlentherapie von Kopf-Hals-Tumoren. Die zugrunde liegenden Pathomechanismen sind komplex und beinhalten die Reaktionen und Interaktionen von Epithelzellen, Fibroblasten, Makrophagen und Gef¨aßendothelzellen. Dies schließt die vermehrte Bildung von Stickstoff-Monoxid (NO) in Folge einer Stimulation der induzierbaren NO-Synthase (iNOS) ein. Ziele der Untersuchungen: Ziel der vorliegenden Arbeit ist es, die Wirkung von L-NAME (nitro-L-Arginin-Methyl-Ester), einem unselektiven Inhibitor der NOS, auf die Strahlenreaktion der oralen Mukosa im etablierten Tiermodell der Schleimhaut der Zungenunterseite der Maus zu untersuchen. Materialien und Methoden: Die Untersuchungen erfolgen mit Mäusen des InzuchtWildtypstammes C3H/Neu. Als Bestrahlungstechniken kommen die perkutane Schnauzenbestrahlung (200 kV Röntgenstrahlung) und/oder die lokale Bestrahlung (25 kV Röntgenstrahlung) eines 3·3 mm2 großen Testfeldes der Zungenunterseite der Maus zum Einsatz. In Fraktionierungsprotokollen werden 5x3 Gy/Woche über 1 (Tage 04) sowie 2 Wochen (Tage 0-4, 7-11) auf die gesamte Schnauze der Tiere appliziert. Anschließend erfolgt eine lokale Aufsättigungsbestrahlung mit gestaffelten Dosen (5 Dosisgruppen, je 10 Tiere) zur Generierung kompletter Dosis-Effekt-Kurven (Tag 7 bzw. 14). Einzeitbestrahlungen des lokalen Testfeldes finden ebenfalls mit gestaffelten Dosen statt. L-NAME (täglich 0,2 mg/kg i.p.) wird an den Bestrahlungstagen 30 Minuten vor der Bestrahlung appliziert. Bei Einzeitbestrahlung werden 2 verschiedene Behandlungszeiträume getestet: 3 Tage vor der Bestrahlung bis zur Erstdiagnose (-3/D) oder Ausheilung der Ulzerationen (-3/H). In Kombination mit fraktionierter Bestrahlung über 1 Woche werden 3 Zeiträume untersucht (-3/7, -3/D oder -3/H). Bei 2 Wochen fraktionierter Bestrahlung erfolgt die L-NAME-Gabe in folgenden Intervallen: -3/7, -3/D, -3/H, -3/14 oder 7/14. Als quantaler Endpunkt für Dosis-EffektAnalysen dient die Ulzeration der Schleimhaut im Testfeld. Mittels Logit-Analyse werden Dosis-Effekt-Beziehungen ermittelt. Der ED50-Wert und dessen Standardabweichung σ dienen der Charakterisierung der Dosis-Effekt-Kurven. In histologischen Untersuchungen werden maximal 10 Fraktionen zu 3 Gy über 2 Wochen appliziert, mit/ohne Gabe von L-NAME von Tag -3 bis zur Tötung. Die Zungenentnahme erfolgt bei je 5 Tieren in zweitägigen Abständen (Tag 1 bis 25). Ergebnisse: Für die alleinige Einzeitbestrahlung ergibt sich eine signifikante Dosisabhängigkeit der Ulkusinzidenz mit einer ED50 von 13,6±1,0 Gy. Die mittlere Latenzzeit beträgt 10,6±1,1 Tage, die durchschnittliche Ulkusdauer 3,5±1,0 Tage. Nach alleiniger einwöchig fraktionierter Bestrahlung beträgt die ED50 der Testbestrahlung 12,3±0,8 Gy. L-NAME von Tag -3 bis Tag 6 bzw. -3/D hat keinen signifikanten Einfluss (ED50 13,3±1,2 Gy bzw. 12,8±1,0 Gy). Lediglich für den Applikationszeitraum Tag -3/H kann eine signifikante Erhöhung der ED50 auf 14,7±1,7 Gy (p=0,0298) nachgewiesen werden. Die Testbestrahlung nach 2-wöchiger Fraktionierung ohne L-NAME ergibt eine ED50 von 13,0±0,1 Gy. L-NAME hat wiederum keinen signifikanten Einfluss auf die Strahlenempfindlichkeit der Mundschleimhaut (ED50-Werte: -3/6 - 12,9±0,1 Gy, -3/14 - 13,0±0,1 Gy, -3/H - 13,8±1,4 Gy und 7/14 - 13,1±0,8 Gy). Während alleiniger fraktionierter Bestrahlung nimmt die Zellzahl zunächst ab (Tag 11: 70 %). Im Anschluss steigt sie über das Ausgangsniveau (Tag 19: 126 %). F¨ur die L-NAME-behandelte Schleimhaut findet sich ein qualitativ vergleichbarer Verlauf; es zeigt sich lediglich eine geringfügige Erhöhung der Zellzahl in der funktionellen Schicht (150 % statt 140 %). Die Epitheldicke nimmt unter L-NAME-Behandlung in den ersten Tagen der Nachbeobachtungszeit deutlich zu. Schlußfolgerungen: Zusammenfassend erweist sich in der vorliegenden Arbeit nur die L-NAME-Applikation -3/H bei einwöchig fraktionierter Bestrahlung als wirksam, wobei der Grund f¨ur diese selektive Wirkung unklar bleibt. Offensichtlich sind NOvermittelte Prozesse ohne substanzielle Relevanz f¨ur die epitheliale Strahlenreaktion der Mundschleimhaut. Auf der Basis dieser Ergebnisse ist die Hemmung von iNOS durch L-NAME keine aussichtsreiche Strategie zur Reduktion der radiogenen Mucositis enoralis, und sollte deshalb auch nicht in klinischen Studien verfolgt werden. Die Frage, ob andere (i)NOS-Hemmstoffe ein mukoprotektives Potential besitzen, sollte in weiteren, translationalen strahlenbiologischen Studien geklärt werden.
373

Verträglichkeit und Effektivität Cyclosporin A-vermittelter Immunsuppression beim Schaf für die xenogene, intrazerebrale Transplantation: Verträglichkeit und Effektivität Cyclosporin A-vermittelterImmunsuppression beim Schaf für die xenogene, intrazerebraleTransplantation

Diehl, Rita 27 September 2016 (has links)
Einleitung Der Einsatz von Stammzellen als Grundlage neuer therapeutischer Strategien wird bereits seit über 25 Jahren intensiv erforscht. Stammzellen sind in der Lage, in verschiedene funktionale Zelltypen auszudifferenzieren und verfügen über ein enormes Proliferationspotential (NAM et al. 2015). Ausgehend von den Fähigkeiten von Stammzellen sehen Forscher und Kliniker erstmals eine realistische Möglichkeit, kurative Therapieoptionen für Erkrankungen zu entwickeln, die bisher als schwer behandelbar oder sogar unheilbar angesehen wurden. Davon könnten insbesondere Patienten chronisch-degenerativer neurologischer und zerebrovaskulärer Erkrankungen, einschließlich der großen Anzahl an Schlaganfallopfern, profitieren. Schlaganfälle repräsentieren eine der häufigsten Todesursachen in der westlichen Welt (LOPEZ et al. 2006). Ein Drittel der betroffenen Patienten verstirbt innerhalb eines Jahres, während etwa 40% von dauerhaften Behinderungen betroffen sind (MOZAFFARIAN et al. 2015). Trotz intensiver Forschung existieren neben der systemischen Thrombolyse, die auf einen engen Zeitraum von maximal 4,5 Stunden nach dem Akutereignis beschränkt ist, keine zugelassenen Therapieoptionen (HACKE et al. 2008, SAVER et al. 2009). Zelltherapeutische Strategien zur Behandlung des Schlaganfalls werden daher als besonders vielversprechend angesehen (ANDRES et al. 2011). Neben den bereits gesicherten Erkenntnissen zur stammzelltherapeutischen Sicherheit und Wirksamkeit aus Studien unter Einsatz gängiger Nagermodellen (BLISS et al. 2006, JOO et al. 2013) wird insbesondere die Überprüfung der Wirksamkeit an geeigneten Großtiermodellen gefordert, die die Situation des menschlichen Schlaganfallpatienten möglichst realistisch wiedergeben sollen (SAVITZ et al. 2011). Eine Voraussetzung für die erfolgreiche Testung eines zelltherapeutischen Ansatzes in einem Großtiermodell mit fokaler zerebraler Ischämie besteht darin, ein langfristiges Überleben xenogener Zelltransplantate durch ein geeignetes Immunsuppressionsprotokoll zu erreichen. Die Notwendigkeit einer Immunsuppression besteht darin, dass sowohl allo- als auch xenogene Transplantate eine Immunantwort beim Empfänger auslösen und somit zu einer Abstoßungsreaktion führen können (JANEWAY 2002). Die Anwendung von immunsuppressiven Medikamenten geht dabei aber häufig mit Nebenwirkungen einher. Insbesondere beim Schaf existiert jedoch nur eine limitierte Datenlage zu immunsuppressiven Protokollen und deren Nebenwirkungen. Ziele der Untersuchung Das Ziel der vorliegenden Studie bestand darin, eine xenogene Transplantation von fetalen humanen neuralen Progenitorzellen (fhNPZ) in einem gesunden Schafsmodell durchzuführen, um die Wirksamkeit in Hinblick auf das Transplantatüberleben und die Nebenwirkungen einer Immunsuppression mittels Cyclosporin A (CsA) zu untersuchen. Materialien und Methoden Hierfür wurden je 5 Schafe in zwei Gruppen über einen Zeitraum von 64 Tagen immunsupprimiert (iCsA: 3 mg CsA/kg 2x tägl. bis einschließlich Tag 36, danach 3 mg CsA/kg 1x tägl. jeden 3. Tag; kCsA: kontinuierlich 3 mg CsA/kg 2x tägl.), während eine Kontrollgruppe (Kon) von ebenfalls 5 Tieren keine Immunsuppression erhielt. Am Versuchstag 22 wurde den Schafen eisenmarkierte fhNPZ (Eisenkonzentration: 3,0 mM, ca. 200.000 Zellen pro Transplantationsposition) stereotaktisch in das gesunde Gehirn transplantiert. Aufgrund der Eisenmarkierung der Stammzellen konnten diese an den Versuchstagen 23, 36 und 64 mittels 3,0 MRT-Aufnahmen in vivo überwacht und anschließend ex vivo das Überleben der fhNPZ im Schafhirn 42 Tage nach Transplantation histologisch untersucht werden. Für die Untersuchungen zu Wirkspiegeln und Nebenwirkungen von CsA im Schaf wurden den Versuchstieren innerhalb des Versuchszeitraums regelmäßig Blutproben entnommen und am Versuchsende eine pathologische und histologische Untersuchung von Leber und Nieren durchgeführt. Ergebnisse Bei den durchgeführten Untersuchungen konnte festgestellt werden, dass die CsA-Wirkspiegel im Blut bei der kCsA (424,0 ± 135,0 ng/ml) signifikant höher waren im Vergleich zur iCsA (198,5 ± 155,9 ng/ml). Diese Unterschiede besaßen jedoch keinen Einfluss auf das Langzeitüberleben der transplantierten fhNPZ. In keiner der drei Versuchsgruppen konnten vitale Zellen 42 Tage nach der Transplantation aufgefunden werden. Die Untersuchung der Nebenwirkungen von CsA ergab, dass die Langzeitgabe von CsA Anzeichen für einen hämatologischen Einfluss zeigt. Ebenso konnte sowohl eine hepatotoxische, als auch eine nephrotoxische Wirkung von CsA beim Schaf nachgewiesen werden. Schlussfolgerungen Schlussfolgernd kann zusammengefasst werden, dass die Gabe von 3 mg CsA/kg 2x tägl. nicht suffizient einer Abstoßungsreaktion xenogener ins Schafhirn transplantierter fhNPZ entgegenwirkt. Für das Ziel einer suffizienten zelltherapeutischen Anwendung im Schaf nach einem Schlaganfall sind somit weitere Untersuchungen zu einer wirksamen Immunsuppression beim Schaf und zu einem verbesserten Transplantatüberleben notwendig. Desweiteren konnten klinische und pathologische Nebenwirkungen beim Schaf durch die Langzeitgabe des Immunsuppressivums CsA festgestellt werden.:INHALTSVERZEICHNIS .................................................................................................................... I ABKÜRZUNGSVERZEICHNIS ....................................................................................................... VI 1 EINLEITUNG .............................................................................................................................. 1 2 LITERATURÜBERSICHT ......................................................................................................... 2 2.1 Klassifikation von Stammzellen ......................................................................................... 2 2.2 Tierexperimentelle Stammzelltherapie beim Schlaganfall .............................................. 5 2.2.1 Hintergrund der translationalen Forschung am Tiermodell ............................................... 5 2.2.2 Tiermodelle der fokalen zerebralen Ischämie .................................................................... 6 2.2.3 Das Schaf als Großtiermodell ............................................................................................ 7 2.2.4 Transplantation fhNPZ als zelltherapeutischer Ansatz nach fokaler zerebraler Ischämie . 8 2.2.4.1 Die In-vivo-Überwachung von in Schafhirne transplantierten fhNPZ .......................... 9 2.2.4.2 Der immunhistochemische Nachweis vitaler humaner Zellen ex vivo im Schafhirn .. 11 2.3 Immunsuppression nach der Transplantation von Stammzellen .................................. 12 2.3.1 Wirkmechanismen des angeborenen und erworbenen Immunsystems ........................... 12 2.3.2 Immunantwort nach Transplantation ............................................................................... 12 2.3.3 Wirkstoffklassen von Immunsuppressiva ........................................................................ 14 2.3.4 Cyclosporin A .................................................................................................................. 16 2.3.4.1 Wirkmechanismus von Cyclosporin A ........................................................................ 16 2.3.4.2 Pharmakokinetik und Metabolisierung von Cyclosporin A ........................................ 16 2.3.4.3 Applikation und Dosierung von Cyclosporin A .......................................................... 17 2.3.4.4 Nebenwirkungen und Toxizität von Cyclosporin A .................................................... 17 2.3.4.5 Anwendung von Cyclosporin A in der tierexperimentellen Forschung ...................... 18 2.4 Fragestellung und Versuchsziele der Dissertation .......................................................... 19 3 TIERE, MATERIAL UND METHODEN ............................................................................... 20 3.1 Zellkultur ............................................................................................................................ 20 3.1.1 Zellkulturmedien und Zusammensetzung ........................................................................ 20 3.1.2 Auftauen und Aussaat der Zellen .................................................................................... 20 3.1.3 Ablösen der Zellen ........................................................................................................... 21 3.1.4 Zellzählung mittels Trypanblautest ................................................................................. 21 3.1.5 Passagieren der Zellen ..................................................................................................... 21 3.1.6 Eisenmarkierung der Zellen ............................................................................................. 22 3.1.7 Proliferations- und Vitalitätstests .................................................................................... 22 3.1.8 Ablösen der Zellen für Transplantationsexperimente ...................................................... 22 3.1.9 Mykoplasmentest ............................................................................................................. 23 3.2 Bestimmung der T2 NMR-Relaxationszeit ...................................................................... 23 3.3 Gelphantome ....................................................................................................................... 24 3.3.1 Herstellung und Ausgießen .............................................................................................. 24 3.3.2 Anfertigen von In-vitro-MRT-Aufnahmen zum Nachweis der eisenmarkierten fhNPZ . 25 3.4 Versuchstiere ...................................................................................................................... 26 3.4.1 Tierhaltung ....................................................................................................................... 26 3.4.2 Versuchstiere im tierexperimentellen Versuch ................................................................ 26 3.4.2.1 Tierärztliche Untersuchung der Vitalparameter .......................................................... 26 3.4.2.2 Durchführung des neurologischen Untersuchungsgangs ............................................. 27 3.4.2.3 Blutprobenentnahme, Versand und Detektiermethode ................................................ 27 3.5 Versuchsaufbau und Durchführung ................................................................................ 28 3.5.1 Anästhesie ........................................................................................................................ 29 3.5.2 Schmerzmittelregime und Infektionsprophylaxe ............................................................. 30 3.5.3 Implantation des Portsystems .......................................................................................... 31 3.5.4 Applikation von CsA ....................................................................................................... 32 3.5.4.1 Herstellung der Infusionslösung .................................................................................. 32 3.5.4.2 Applikation über das Portsystem ................................................................................. 33 3.5.5 Stammzelltransplantation ................................................................................................. 33 3.5.5.1 Anfertigen von MRT-Aufnahmen im 1,5 T MRT ....................................................... 34 3.5.5.2 Planung der stereotaktischen Zelltransplantation ........................................................ 34 3.5.5.3 Stereotaktische Zelltransplantation .............................................................................. 34 3.5.6 Nachweis der eisenmarkierten Stammzellen im 3,0 T MRT ........................................... 35 3.5.6.1 Methodik zum Nachweis und zur Quantifizierung der eisenmarkierten fhNPZ im Schafhirn ...................................................................................................................... 35 3.5.7 Sektion der Versuchstiere und Probenentnahme ............................................................. 36 3.5.8 Anfertigen der histologischen Gewebeschnitte ................................................................ 36 3.5.8.1 Herstellung der Paraffinschnitte .................................................................................. 37 3.5.8.2 Probenaufarbeitung und Lamellieren der Gehirne ....................................................... 37 3.5.8.3 Herstellung der Gefrierschnitte .................................................................................... 38 3.5.9 Histologische Färbungen ................................................................................................. 38 3.5.9.1 Hämatoxylin-Eosin-Färbung ....................................................................................... 40 3.5.9.2 Berliner Blau-Färbung ................................................................................................. 40 3.5.9.3 Fouchét-Färbung .......................................................................................................... 40 3.5.9.4 Immunmarkierung mit STEM101-DAB und Berliner Blau-Färbung ......................... 40 3.5.9.5 Immunhistologische Markierung mit Iba1-Antikörpern .............................................. 40 3.5.10 Auswertung der histologischen Präparate ........................................................................ 41 3.6 Statistik ............................................................................................................................... 44 4 ERGEBNISSE ............................................................................................................................. 47 4.1 Nachweis eisenmarkierter fhNPZ in vitro via MRT-Aufnahmen .................................. 47 4.1.1 Welche Eisenkonzentration ist für die Markierung der fhNPZ am geeignetsten? ........... 47 4.1.2 Können markierte fhNPZ durch eine T2-gewichtete MRT-Sequenz dargestellt werden? ......................................................................................................................................... 49 4.1.3 Wo liegt das Detektionslimit markierter fhNPZ in einer T2-gewichteten MRT-Sequenz? ......................................................................................................................................... 50 4.2 Der Einfluss des Immunsuppressivums CsA auf das Überleben der transplantierten fhNPZ im Schafhirn .......................................................................................................... 51 4.2.1 Gibt es gruppenspezifische Unterschiede in den CsA-Blutkonzentrationen? ................. 51 4.2.2 Besitzt die Transplantation fhNPZ einen neurologischen Einfluss auf die Sensorik und Motorik? .......................................................................................................................... 54 4.2.3 Was geschieht mit den transplantierten fhNPZ im Zeitverlauf und Gruppenvergleich? . 55 4.2.4 Können vitale fhNPZ 42 Tage nach Transplantation im Schafhirn nachgewiesen werden? ......................................................................................................................................... 56 4.3 Klinische und pathologische Nebenwirkungen von CsA im Schaf ................................ 59 4.3.1 Beeinflusst die CsA-Applikation in vivo klinische Parameter oder Blutwerte beim Schaf? ......................................................................................................................................... 59 4.3.1.1 Auswertung der Körpertemperaturverläufe ................................................................. 59 4.3.1.2 Auswertung der Körpergewichtsverläufe .................................................................... 60 4.3.1.3 Auswertung hämodynamischer Parameter .................................................................. 61 4.3.1.4 Auswertung hämatologischer Blutparameter .............................................................. 62 4.3.1.5 Auswertung leberspezifischer Blutparameter .............................................................. 65 4.3.1.6 Auswertung nierenspezifischer Blutparameter ............................................................ 69 4.3.1.7 Auswertung sonstiger Blutparameter .......................................................................... 70 4.3.2 Können ex vivo toxische Einflüsse von CsA auf das Schaf nachgewiesen werden? ....... 71 4.3.2.1 Makroskopische Auswertung der Sektionsbefunde .................................................... 71 4.3.2.2 Histologische Auswertung Leber und Nieren ............................................................. 73 5 DISKUSSION ............................................................................................................................. 76 5.1 Hintergrund der Arbeit und Versuchsziele ..................................................................... 76 5.2 Bewertung des Studiendesigns und der Versuchsdurchführung .................................. 76 5.2.1 Versuchstiere und Haltungsbedingungen ........................................................................ 76 5.2.2 Studiendesign und das Schaf als Tiermodell ................................................................... 77 5.3 Diskussion der Ergebnisse ................................................................................................. 78 5.3.1 Ein Nachweis eisenmarkierter fhNPZ in vitro via MRT-Aufnahmen ist möglich .......... 78 5.3.1.1 Eine Eisenkonzentration von 3,0 mM ist für die Markierung der fhNPZ am geeignetsten ................................................................................................................. 79 5.3.1.2 Markierte fhNPZ können durch eine T2-gewichtete Sequenz dargestellt werden ...... 80 5.3.1.3 Das Detektionslimit markierter fhNPZ liegt in einer T2-gewichteten MRT-Sequenz bei 50.000 Zellen ......................................................................................................... 81 5.3.2 Die Langzeitgabe des Immunsuppressivums CsA besitzt keinen Einfluss auf das Überleben der transplantierten fhNPZ im immunprivilegierten Gehirn .......................... 81 5.3.2.1 Es gibt gruppenspezifische Unterschiede in den CsA-Blutkonzentrationen ............... 81 5.3.2.2 Die Transplantation von fhNPZ besitzt keinen bedeutenden Einfluss auf die Sensorik und Motorik ................................................................................................................. 83 5.3.2.3 Die transplantierten fhNPZ zeigen Veränderungen in Zeitverlauf und Gruppenvergleich ........................................................................................................ 84 5.3.2.4 Es können keine vitalen fhNPZ 42 Tage nach Transplantation im Schafhirn nachgewiesen werden .................................................................................................. 85 5.3.2.5 Schlussfolgerung zur Immunsuppression mittels CsA nach Stammzelltransplantation ins Schafhirn ................................................................................................................ 87 5.3.3 Die Langzeitgabe von CsA verursacht Anzeichen für pathologische Veränderungen und klinische Symptome beim Schaf ...................................................................................... 88 5.3.3.1 Die Langzeitgabe von CsA beeinflusst klinische Parameter beim Schaf .................... 88 5.3.3.2 Die Langzeitgabe von CsA zeigt wahrscheinlich keine hämodynamische Wirkung .. 89 5.3.3.3 Die Gabe von CsA zeigt Anzeichen für eine hämatologische Wirkung beim Schaf ... 89 5.3.3.4 Die Gabe von CsA zeigt eine hepatotoxische Wirkung beim Schaf ........................... 90 5.3.3.5 Die Gabe von CsA zeigt eine nephrotoxische Wirkung beim Schaf ........................... 93 5.3.3.6 Die Langzeitgabe von CsA beeinflusst weitere unspezifische Blutparameter ............ 95 5.3.3.7 Schlussfolgerungen zu Nebenwirkungen von CsA beim Schaf .................................. 95 5.4 Allgemeine Schlussfolgerung ............................................................................................. 95 5.5 Ausblick ............................................................................................................................... 96 6 ZUSAMMENFASSUNG ............................................................................................................ 97 7 SUMMARY ................................................................................................................................. 99 8 LITERATURVERZEICHNIS ................................................................................................. 101 9 ANHANG ................................................................................................................................... 110 9.1 Ergänzende Tabelle zur Herstellung der Gelphantome ............................................... 110 9.2 Ergänzende Tabellen zur Herstellung histologischer Präparate ................................. 111 9.2.1 Herstellung der Paraffinblöcke ...................................................................................... 111 9.2.2 Histologische Färbungen und Immunhistochemische Methoden .................................. 112 9.3 Ergänzende Tabellen zur Statistik ................................................................................. 116 9.4 Verwendete Referenzwerte ............................................................................................. 118 9.5 Übersicht der ausgewerteten Blutparameter ................................................................ 119 9.6 Übersicht zu tierexperimentellen Einsätzen von Stammzellen in Schlaganfallmodellen ........................................................................................................................................... 122 9.7 Auflistung verwendeter Materialien und Geräte .......................................................... 123 9.8 Abbildungsverzeichnis ..................................................................................................... 129 9.9 Formelverzeichnis ............................................................................................................ 130 9.10 Tabellenverzeichnis ......................................................................................................... 130 10 DANKSAGUNG ....................................................................................................................... 132
374

Změny exprese beta-cateninu v průběhu ontogeneze u miniprasat transgenních pro lidský mutovaný huntingtin / Changes in beta-catenin expression during ontogenesis in the transgenic minipigs for human mutant huntingtin

Žižková, Martina January 2013 (has links)
Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disorder caused by an unstable expansion of the CAG repeat sequence within the huntingtin gene. Huntingtin associates with ubiquitin-proteasome system that ensures degradation of particular proteins including β-catenin which is an important molecule whose equilibrated degradation is necessary for the proper functioning of the Wnt signaling pathway. The binding of β-catenin to the destruction complex is altered in HD, leading to the toxic stabilization of β-catenin. The main goal of my thesis was to determine whether the accumulation of β-catenin due to the presence of mutant huntingtin is also characteristic of Liběchov minipigs, a large animal model of Huntington's disease stably expressing N-truncated human mutant huntingtin. Using immunoblot and specific antibodies, we have revealed age-dependent accumulation of mutant huntingtin in transgenic minipigs. Unlike endogenous huntingtin, no decrease of the level of mutant huntingtin was observed in the striatum of transgenic animals. Surprisingly, this was followed by a decrease of phosphorylated β-catenin. Nevertheless, our results demostrate the accumulation of β-catenin in mesenchymal stem cells isolated from the oldest boars during ontogenesis. Furthermore, we have revealed a...
375

Vliv dizocilpinu na behaviorální strategie potkanů v úloze aktivního vyhýbání se místu / Effect of dizocilpine on behavioral strategies of rats in the place avoidance task

Antošová, Eliška January 2013 (has links)
Non-competitive antagonists of NMDA receptors can induce psychomimetic effects - they can cause schizophrenia-like behavior in healthy volunteers. MK-801 is such an agent. It is often used to model schizophrenia-like behavior in experimental animals. On the other hand, non-competitive antagonists of NMDA receptors show antidepressant effects both in patients suffering from depression and in animal models. Currently, cognitive deficit is considered to be a crucial symptom of the schizophrenia. Cognitive coordination is a process distinguishing irrelevant and relevant stimuli. A disruption of this process could play a pivotal role in cognitive deficit in schizophrenia. Active Allothetic Place Avoidance task (AAPA) could be a useful tool to study this phenomenon. In this task an animal has to distinguish between two spatial (reference) frames, whereas one of them is irrelevant and the other is relevant. The aims of my diploma thesis were: to study 1) behavioral strategies of laboratory rats in AAPA task and 2) effect of MK-801 on behavioral strategies and cognitive efficiency of rats in this task. The rats demonstrated two different strategies in the AAPA task. The first strategy was an active avoidance of an aversive sector; the second one was "freezing" with minimal active movement on the arena. Application...
376

Vliv mutovaného huntingtinu na oxidativní stres v primárních fibroblastech izolovaných z knock-in miniprasečího modelu pro Huntingtonovu nemoc / The impact of mutant huntingtin on oxidative stress in primary fibroblasts isolated from a new Huntington's disease knock in porcine model

Sekáč, Dávid January 2020 (has links)
Huntington's chorea is a dominantly inherited disease caused by trinucleotide (Cytosine-Adenine -Guanine) expansion in a gene coding huntingtin protein. Carriers of these mutation show symptoms associated with motor impairment, a cognitive and psychiatric disturbance, which is called Huntington's disease (HD). The major sign of HD is striatal atrophy in the middle age of life. Since it is known that huntingtin protein participates in a lot of cellular processes, such as transcriptional regulation and metabolism, these processes change by its mutation. One of the features observed in HD pathogenesis is the presence of oxidative stress. The aim of the work was to monitor the molecular changes preceding the HD manifestation in the knock-in minipig model. As a material for monitoring molecular changes leading to this condition, primary fibroblasts were used. Whereas, the oxidative stress arises from an imbalance between oxidants and antioxidants, level of reactive species and lipid peroxidation together with expression of antioxidant response associated genes was measured. At the same time, expression of metabolic and DNA repair related genes was monitored. Although the differences in oxidative stress level or the expression of antioxidative response genes were not detected, the changes in the...
377

Das Einwachsverhalten von zylindrischen Implantaten aus einer porösen Ti-6Al-4V-Legierung in die Femurkondyle des Kaninchens / The ingrowth behavior of cylindrical implants made of a porous Ti-6Al-4V alloy in the femoral condyle of the rabbit

Frosch, Alice 10 December 2020 (has links)
No description available.
378

Biomechanický model interakce ventilace a oběhu za podmínek umělé plicní ventilace / Biomechanical model of interaction between ventilation and hemodynamics induced by mechanical ventilation

Otáhal, Michal January 2019 (has links)
MUDr. Michal Otáhal Biomechanický model interakce oběhu a ventilace za podmínek UPV Abstract: Conventional mechanical ventilation provides gas exchange in conditions of respiratory failure by application positive airway pressure in the respiratory system. Due to the significant change in pressure conditions inside the thorax during conventional artificial ventilation the circulation can be significantly affected. Recruitment maneuver (RM) techniques can be a part of ventilation strategy in patients with the Acute Respiratory Distress Syndrome (ARDS), that are used to re-aerate collapsed parts of the lung parenchyma. During these RMs a significantly higher airway pressure is used than in protective ventilation strategy, which can limit the flow through the lung capillary network and can significantly affect the systemic hemodynamics of the patient. The aim of this work was to develop an optimized animation model of ARDS, then to compare the influence that has the application of different types of recruitment maneuvers on hemodynamics and to create a biomechanical simulation model of interaction and blood circulation and its verification with data obtained during the implementation of different types of RM in the experimental animal ARDS model. Results from the experimental animal model and simulations...
379

Effets pléiotropes de la lamine A mutée en un site responsable de dystrophie musculaire congénitale : recherche translationnelle, de la clinique aux modèles cellulaires et animaux / Pleiotropic effects of a mutant lamin A responsible for congenital muscular dystorphy : a translational study, from the clinical case to cellular and animal models

Barateau, Alice 26 October 2016 (has links)
Des centaines de mutations du gène LMNA codant les lamines A/C, protéines nucléaires de la famille des filaments intermédiaires, causent des pathologies. Pour ma thèse, j’ai étudié la mutation LMNA p.R388P, nouvellement identifiée comme responsable de dystrophie musculaire congénitale (L-CMD) associée à une lipodystrophie. Mes objectifs étaient de caractériser les propriétés des lamines mutées et leur impact dans des cellules et dans un muscle squelettique.Résultats : 1) La culture ex vivo de fibroblastes de peau de la patiente a révélé leur entrée prématurée en sénescence. 2) Dans des modèles de cellules immortalisées, la lamine A mutante surexprimée, qui s’accumule exclusivement dans le nucléoplasme et est anormalement soluble a modifié les propriétés de ses partenaires LAP2α et émerine, augmenté le nombre de gènes liés par les lamines A, diminué la compaction de la chromatine et induit des dysmorphies nucléaires. Le traitement des cellules avec des inhibiteurs d’histones acétyltransférases ou désacétylases n’a pas restauré la forme des noyaux. 3) Dans le muscle tibial antérieur de souris injecté avec des virus adéno-associés codant les lamines A mutantes, le nombre de fibres oxydatives de type IIA est diminué et l’expression de quelques gènes est modifiée.Conclusion : Nous avons montré que les lamines A R388P altèrent la structure du noyau, l’intégrité de l’enveloppe nucléaire et l’organisation/expression du génome, avec des conséquences sur le typage des fibres de muscle squelettique. De par ses effets pléiotropes, la lamine A mutante apparaît particulièrement toxique, en accord avec la sévérité de la pathologie observée chez la patiente. / Hundreds of mutations in the LMNA gene coding lamins A/C, nuclear intermediate filament proteins, cause several diseases. For my thesis, I studied the p.R388P LMNA mutation, newly identified as responsible for congenital muscular dystrophy (L-CMD) associated with lipodystrophy. My goals were to determine the properties of the mutant lamin A and its impact in cells and a skeletal muscle.Results: 1) Ex vivo culture of patient skin fibroblasts revealed their premature entry into senescence. 2) In immortalised cell lines, the overexpression of the mutant lamin A, which accumulates exclusively in the nucleoplasm and is abnormally soluble, modified the properties of two partners, LAP2α and emerin, increased the amount of genes bound by lamin A, decreased the compaction of chromatin and induced nuclear dysmorphies. Treatment of cells with histone acetyltransferase or deacetylase inhibitors did not rescue nuclear shape. 3) In mouse tibialis anterior muscle injected with adeno-associated virus coding for mutant lamin A, the number of oxidative type IIA myofibres was decreased and expression of few genes modified. Conclusion: We showed that R388P lamins A alter the structure of nuclei, nuclear envelope integrity and the organisation/expression of the genome, with consequences on skeletal muscle fibre typing. Because of its pleiotropic effects, the mutant lamin A appears particularly toxic, in agreement with the severity of the patient’s disease.
380

Eludicating triggers and neurochemical circuits underlying hot flashes in an ovariectomy model of menopause

Federici, Lauren Michele 26 February 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Menopausal symptoms, primarily hot flashes, are a pressing clinical problem for both naturally menopausal women and breast and ovarian cancer patients, with a high societal and personal cost. Hot flashes are poorly understood, and animal modeling has been scarce, which has substantially hindered the development of non-hormonal treatments. An emerging factor in the hot flash experience is the role of anxiety and stress-related stimuli, which have repeatedly been shown to influence the bother, frequency, and severity of hot flashes. Causal relationships are difficult to determine in a clinical setting, and the use of animal models offers the ability to elucidate causality and mechanisms. The first part of this work details the development and validation of novel animal models of hot flashes using clinically relevant triggers (i.e., compounds or stimuli that cause hot flashes in clinical settings), which also increase anxiety symptoms. These studies revealed that these triggers elicited strong (7-9 °C) and rapid hot flash-associated increases in tail skin temperature in rats. In a surgical ovariectomy rat model of menopause, which typically exhibit anxiety-like behavior, hot flash provocation revealed an ovariectomy-dependent vulnerability, which was attenuated by estrogen replacement in tested models. An examination of the neural circuitry in response to the most robust flushing compound revealed increased cellular activity in key thermoregulatory and emotionally relevant areas. The orexin neuropeptide system was hyperactive and presented as a novel target; pretreatment with selective and dual orexin receptor antagonists significantly diminished or eliminated, respectively, the response to a hot flash provocation in ovariectomized rats. The insertion/deletion polymorphism of the serotonin transporter has been linked to increased anxiety-associated traits in humans, and subsequent studies prolonged hot flashes in SERT+/- rats, which also caused hot flashes in highly symptomatic women. These studies indicate the orexin system may be a novel non-hormonal treatment target, and future studies will determine the therapeutic importance of orexin receptor antagonists for menopausal symptoms.

Page generated in 0.0961 seconds