• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 206
  • 80
  • 71
  • 24
  • 24
  • 24
  • 24
  • 24
  • 24
  • 15
  • 2
  • 1
  • 1
  • Tagged with
  • 351
  • 351
  • 77
  • 71
  • 66
  • 65
  • 61
  • 60
  • 60
  • 59
  • 47
  • 41
  • 36
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Understanding the basis of 5-Bromo-2'-deoxuridine teratogen specificity in organogenesis stage mouse embryos

Gnanabakthan, Naveen. January 2008 (has links)
No description available.
122

Functional characterization of zinc cluster transcriptional regulators in Saccharomyces cerevisiae and Candida albicans

Soontorngun, Nitnipa. January 2008 (has links)
No description available.
123

Effect of RU486 on Different Stages of Mouse Preimplantation Embryos in Vitro

Juneja, S C., Dodson, M. G. 01 November 1990 (has links)
17 beta-Hydroxy-11 beta(4-dimethylaminophenyl)-17 alpha-(1-propynyl)estra-4, 9-dien-3-one (RU486) inhibited the in vitro development of different stages of mouse preimplantation embryos under study. Two-celled embryos, morulae, and early blastocysts were obtained from B6D2F1 mice. The embryos were grown in Ham F-10 nutrient mixture (with glutamine) supplemented with sodium bicarbonate (2.1 g/L), calcium lactate (282 mg/L), and bovine serum albumin (fraction V, 3 mg/mL) at 37 degrees C in a humidified incubator supplied with 5% CO2 in air. RU486 was added to the culture medium at concentrations of 1, 5, 10, and 20 micrograms/mL. Culture medium with 0.05% ethanol served as the control. In vitro growth of embryos was assessed by the following criteria: (i) two-celled stage embryo development to blastocyst stage after 72 h, (ii) morula stage grown to blastocyst stage after 24 h, and (iii) early blastocyst stage development to hatching blastocyst after 12 h, in culture. RU486 inhibited the in vitro development of two-celled embryos, morulae, and early blastocysts at concentrations of 5, 10, and 20 micrograms/mL culture medium (p less than 0.001). The inhibitory effect of RU486 at these concentrations on the development of all the stages of embryos under study was irreversible. However, RU486 did not affect embryo development at 1 microgram/mL culture medium. The study indicates the direct adverse effect of RU486 at 5 micrograms/mL and higher concentrations in culture medium on the development of mouse preimplantation embryos in vitro, and it encourages its further investigation as a postcoital contraceptive in animal models and humans.
124

IL-4 and IL-10 Modulation of CD40-Mediated Signaling of Monocyte IL-1beta Synthesis and Rescue From Apoptosis

Poe, J C., Wagner, D. H., Miller, R W., Stout, R D., Suttles, J. 15 July 1997 (has links)
Previous studies have demonstrated that the interaction of CD40 on monocytes with CD40 ligand, present on activated CD4+ T cells, induces monocyte inflammatory cytokine synthesis and rescues monocytes from apoptosis. These findings suggest a role for CD40 signaling of monocyte activation in the maintenance and/or exacerbation of nonseptic (e.g., autoimmune) inflammatory responses. In the present study the effects of the modulatory cytokines IL-4 and IL-10 on CD40-mediated signaling of monocyte IL-1beta synthesis and rescue from apoptosis were examined. Both IL-4 and IL-10 decreased CD40-dependent IL-1beta synthesis in a dose-dependent manner individually and synergized in this effect when used concurrently, with minimal effect on CD40 surface expression. CD40 signaling of IL-1beta synthesis was shown to be dependent on the induction of protein tyrosine kinase (PTK) activity, and both IL-4 and IL-10 diminished CD40-mediated tyrosine phosphorylation of monocyte cellular proteins. However, IL-4, but not IL-10, blocked CD40-mediated rescue from apoptosis, an event that we have demonstrated previously to be dependent on PTK activity as well. Together these results suggest that in monocytes 1) both IL-4 and IL-10 target CD40-induced PTK activity in the down-regulation of IL-1beta synthesis; and 2) IL-4 and IL-10 have divergent effects on the CD40 signaling pathway, in that these cytokines are synergistic with respect to their abilities to inhibit CD40-mediated IL-1beta synthesis and differ in their abilities to block CD40-mediated rescue from apoptosis.
125

Comparison of drug-induced hepato-toxicity in female patients during anti-retroviral therapy

Nhiwatiwa, Melody 13 February 2014 (has links)
A research report submitted to the Faculty of Health Sciences, University of the Witwatersrand, in partial fulfillment of the requirements for the degree of Master of Science in Medicine in Pharmacotherapy, Johannesburg, 2011 / Long term antiretroviral therapy (ART) use is known to cause various toxic adverse effects in patients. Hepato-toxicity is one of the most significant adverse effects which have been associated with all antiretroviral therapy drugs in South Africa and worldwide.
126

Investigation of excitotoxicity induced by kainic acid and N-Methyl-D-Aspartate in adult rat retina. / CUHK electronic theses & dissertations collection

January 1999 (has links)
Sun Qiang. / "December 1999." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (p. 119-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
127

Adrenergic, serotonergic and cholinergic control of testicular blood flow in the rat.

January 1995 (has links)
by Ng Ka On. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 100-122). / Abstract --- p.i / Acknowledgement --- p.vi / Chapter 1. --- Introduction / Chapter 1.1 --- Testicular vasculature --- p.1 / Chapter 1.1.1 --- Structural organization --- p.1 / Chapter 1.1.2 --- Peculiar structural organization pertinent to the Consideration of function --- p.3 / Chapter 1.2 --- Importance of the blood flow to testicular function --- p.6 / Chapter 1.3 --- Measurement of testicular blood flow --- p.8 / Chapter 1.4 --- Control of testicular blood flow --- p.16 / Chapter 1.5 --- Adrenergic control in the testis --- p.18 / Chapter 1.5.1 --- Adrenergic innervation and source of catecholamines --- p.18 / Chapter 1.5.2 --- Regulation of testicular function --- p.20 / Chapter 1.5.3 --- Effect on testicular blood flow --- p.22 / Chapter 1.6 --- Serotonergic control in the testis --- p.23 / Chapter 1.6.1 --- Serotonergic innervation and source of serotonin --- p.23 / Chapter 1.6.2 --- Regulation of testicular function --- p.24 / Chapter 1.6.3 --- Effect on testicular blood flow --- p.25 / Chapter 1.7 --- Cholinergic control in the testis --- p.26 / Chapter 1.7.1 --- Cholinergic innervation and source of acetylcholine --- p.26 / Chapter 1.7.2 --- Regulation of testicular function --- p.28 / Chapter 1.7.3 --- Effect on testicular blood flow --- p.29 / Chapter 1.8 --- Aims of the study --- p.30 / Chapter 2. --- Materials and methods / Chapter 2.1 --- Animals --- p.31 / Chapter 2.2 --- Drugs and chemicals --- p.32 / Chapter 2.3 --- In vivo videomicroscopy method --- p.33 / Chapter 2.4 --- Hydrogen gas clearance method --- p.37 / Chapter 2.5 --- Data and statistical analyses --- p.45 / Chapter 3. --- Results / Chapter 3.1 --- Adrenergic control --- p.46 / Chapter 3.1.1 --- Response of the testicular subcapsular artery to adrenergic agonists and antagonists --- p.46 / Chapter 3.1.2 --- Effect of adrenergic agonists on testicular capillary blood flow --- p.57 / Chapter 3.2 --- Serotonergic control --- p.60 / Chapter 3.2.1 --- Response of the testicular subcapsular artery to serotonergic agonists and antagonists --- p.60 / Chapter 3.2.2 --- Effect of serotonergic agonists on testicular capillary blood flow --- p.69 / Chapter 3.3 --- Cholinergic control --- p.76 / Chapter 3.3.1 --- Response of the testicular subcapsular artery to serotonergic agonists and antagonists --- p.76 / Chapter 3.3.2 --- Effect of serotonergic agonists on testicular capillary blood flow --- p.79 / Chapter 4. --- Discussion / Chapter 4.1 --- Adrenergic control --- p.86 / Chapter 4.2 --- Serotonergic control --- p.90 / Chapter 4.3 --- Cholinergic control --- p.96 / Chapter 4.4 --- General discussion --- p.98 / Chapter 5. --- References --- p.100
128

Prenatal cocaine exposure: the effects on the rat brain dopaminergic system of the offspring.

January 1994 (has links)
by Choi, Heung Ling. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1994. / Includes bibliographical references (leaves 79-95). / Acknowledgement --- p.iv / Abstract --- p.vi / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Cocaine --- p.1 / Chapter 1.1.1 --- History --- p.1 / Chapter 1.1.2 --- Epidemiology --- p.2 / Chapter 1.1.3 --- Pharmacology --- p.3 / Chapter 1.2 --- Maternal Cocaine Abuse --- p.5 / Chapter 1.2.1 --- Human Studies --- p.5 / Chapter 1.2.1.1 --- Prevalence --- p.5 / Chapter 1.2.1.2 --- Effects of Cocaine on the Developing Fetus --- p.7 / Chapter 1.2.1.2.1 --- Fetal Mortality --- p.8 / Chapter 1.2.1.2.2 --- Placental Abruption --- p.9 / Chapter 1.2.1.2.3 --- Premature Birth --- p.9 / Chapter 1.2.1.2.4 --- Neonatal Effects --- p.10 / Chapter 1.2.1.3 --- Congenital Abnormalities --- p.11 / Chapter 1.2.1.3.1 --- Cardiovascular Abnormality --- p.11 / Chapter 1.2.1.3.2 --- Genitourinary Tract Malformation --- p.12 / Chapter 1.2.1.3.3 --- Gastrointestinal Abnormality --- p.12 / Chapter 1.2.1.3.4 --- Respiratory Disorders --- p.13 / Chapter 1.2.1.3.5 --- Visual and Hearing Disorders --- p.14 / Chapter 1.2.1.3.6 --- CNS and Behavioural Abnormalities --- p.15 / Chapter 1.2.2 --- Animal Studies --- p.17 / Chapter 1.2.2.1 --- "Routes of Administration, Dosage and Tissue Distribution " --- p.18 / Chapter 1.2.2.2 --- Maternal and Offspring Effects --- p.21 / Chapter 1.2.2.2.1 --- Fetal and Maternal Mortality --- p.22 / Chapter 1.2.2.2.2 --- Gestational Length --- p.22 / Chapter 1.2.2.2.3 --- Maternal Weight Gain and Fetal Weight --- p.23 / Chapter 1.2.2.2.4 --- Little Size --- p.24 / Chapter 1.2.2.3 --- Congenital Abnormalities --- p.24 / Chapter 1.2.2.4 --- Behavioral Changes --- p.26 / Chapter 1.2.2.5 --- Neurochemical Changes --- p.28 / Chapter 1.2.2.5.1 --- Glucose Metabolism --- p.28 / Chapter 1.2.2.5.2 --- Dopamine Transporter --- p.29 / Chapter 1.2.2.5.3 --- Dopamine D1 Receptor --- p.29 / Chapter 1.2.2.5.4 --- Dopamine D2 Receptor --- p.30 / Chapter 1.2.2.5.5 --- Tyrosine Hydroxylase --- p.30 / Chapter 1.2.2.5.6 --- Other Changes --- p.31 / Chapter 1.3 --- The Aim of the Study --- p.31 / Chapter CHAPTER II --- MATERIALS AND METHODS / Chapter 2.1 --- Administration of Cocaine --- p.34 / Chapter 2.2 --- Biochemical Studies --- p.35 / Chapter 2.2.1 --- Receptor Binding Assays --- p.36 / Chapter 2.2.1.1 --- Dopamine Transporter --- p.37 / Chapter 2.2.1.1.1 --- Specific Binding Assay and Scatchard Analysis --- p.37 / Chapter 2.2.1.2 --- Dopamine D1 Receptor --- p.38 / Chapter 2.2.1.2.1 --- Association Curve --- p.38 / Chapter 2.2.1.2.2 --- Competition Assay --- p.39 / Chapter 2.2.1.2.3 --- Specific Binding Assay and Scatchard Analysis --- p.39 / Chapter 2.2.1.3 --- Dopamine D2 Receptor --- p.39 / Chapter 2.2.1.3.1 --- Association Curve --- p.40 / Chapter 2.2.1.3.2 --- Competition Assay --- p.40 / Chapter 2.2.1.3.3 --- Specific Binding Assay and Scatchard Analysis --- p.40 / Chapter 2.2.1.4 --- Assay for Residual Cocaine in Maternal Brain --- p.41 / Chapter 2.3 --- Statistics --- p.42 / Chapter 2.4 --- Morphological Studies --- p.42 / Chapter 2.4.1 --- Tyrosine Hydroxylase (TH) Immunocytochemical Staining --- p.42 / Chapter 2.5 --- Molecular Genetic Studies --- p.44 / Chapter 2.5.1 --- Material for DNA Insert --- p.44 / Chapter 2.5.1.1 --- "Dopamine Transporter, D2 receptor and β-actin cDNA Probe " --- p.44 / Chapter 2.5.2 --- Preparation for DNA Insert --- p.45 / Chapter 2.5.2.1 --- Competent Cells and Transformation of Plasmid --- p.45 / Chapter 2.5.2.2 --- Growth Transformed Bacteria and Isolation of DNA --- p.46 / Chapter 2.5.2.3 --- Purification of cDNA by Geneclean® II Kit --- p.47 / Chapter 2.5.3 --- Isolation of Total mRNA From Tissue --- p.47 / Chapter 2.5.4 --- Northern Blot Analysis --- p.48 / Chapter 2.5.4.1 --- Analysis of Northern Blots --- p.50 / Chapter 2.5.5 --- In Situ Hybridization --- p.50 / Chapter 2.5.5.1 --- Tissue Preparation --- p.50 / Chapter 2.5.5.2 --- Preparation of Dopamine Transporter Ribroprobe …… --- p.50 / Chapter 2.5.5.3 --- In Situ Hybridization Histochemistry --- p.51 / Chapter CHAPTER III --- RESULTS / Chapter 3.1 --- "Litter Size, Birth Weight and Maternal Weight Gain " --- p.53 / Chapter 3.2 --- Biochemical Studies --- p.53 / Chapter 3.2.1 --- Specific Binding --- p.53 / Chapter 3.2.2 --- Dopamine Transporter - Scatchard Analysis --- p.54 / Chapter 3.2.3 --- Dopamine Receptor --- p.55 / Chapter 3.2.3.1 --- Association Curve --- p.56 / Chapter 3.2.3.2 --- Competitive Curve --- p.57 / Chapter 3.2.3.3 --- Scatchard Analysis --- p.57 / Chapter 3.2.4 --- Dopamine D2 Receptor --- p.59 / Chapter 3.2.4.1 --- Association Curve --- p.59 / Chapter 3.2.4.2 --- Competitive Curve --- p.59 / Chapter 3.2.4.3 --- Scatchard Analysis --- p.59 / Chapter 3.2.5 --- Residual Cocaine Assay in Maternal Brain --- p.61 / Chapter 3.2.5.1 --- Specific Binding --- p.61 / Chapter 3.2.5.1.1 --- Dopamine Transporter --- p.61 / Chapter 3.3.5.1.2 --- Dopamine D1 Receptor --- p.62 / Chapter 3.3.5.1.3 --- Dopamine D2 Receptor --- p.62 / Chapter 3.3 --- Morphological Studies --- p.62 / Chapter 3.3.1 --- Tyrosine Hydroxylase (TH) Immunocytochemical Staining --- p.62 / Chapter 3.4 --- Molecular Genetic Studies --- p.63 / Chapter 3.4.1 --- Northern Blot Analysis --- p.63 / Chapter 3.4.1.1 --- Dopamine Transporter --- p.63 / Chapter 3.4.1.2 --- Dopamine D2 Receptor --- p.64 / Chapter 3.4.2 --- In Situ Hybridization --- p.64 / Chapter CHAPTER IV --- DISCUSSION AND CONCLUSION / Chapter 4.1 --- Discussion --- p.65 / Chapter 4.2 --- Conclusion --- p.77 / References --- p.79 / Publications --- p.95
129

Modulation by extracellular ATP of delayed rectifier potassium currents of guinea-pig single sinoatrial nodal cells.

January 1999 (has links)
Lau Chui Pik. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 104-122). / Abstracts in English and Chinese. / Chapter Chapter 1 --- --- Introduction --- p.1 / Chapter 1.1 --- Importance of sinoatrial node in heart functions --- p.3 / Chapter 1.2 --- The importance of Adenosine 5'-triphosphate (ATP) --- p.5 / "ATP as a neurotransmitter, cotransmitter and neuromodulator" --- p.5 / Role of ATP in the heart --- p.7 / Chapter 1.3 --- Importance of delayed rectifier potassium channels (Ik) in the heart --- p.9 / Delayed rectifier potassium channel --- p.10 / Properties of Ik channels in the sinoatrial nodal (SAN)cells --- p.11 / Importance of Ik on heart function --- p.14 / Chapter 1.4 --- Drug/hormone/neurotransmitter modulation of Ik --- p.15 / Drugs modulations of Ik --- p.15 / Hormones/neurotransmitters modulations of Ik --- p.18 / Chapter 1.5 --- Problems encountered in using extracellular ATP on experiments --- p.23 / Chapter 1.6 --- Classification of P2-purinergic receptors --- p.24 / Major nucleotide receptors --- p.24 / p2X receptors --- p.26 / p2Y receptors --- p.28 / 1.7Objectives of the experiment --- p.30 / Chapter Chapter 2 --- --- Materials & Methods --- p.31 / Chapter 2.1 --- Materials --- p.32 / Chapter 2.1.1 --- Solutions --- p.32 / Chapter 2.1.2 --- Enzymes --- p.34 / Chapter 2.1.3 --- Drugs --- p.34 / Chapter 2.2 --- Methods --- p.35 / Chapter 2.2.1 --- Isolation of guinea pig SAN cells --- p.35 / Chapter 2.2.2 --- Identification of SAN region --- p.36 / Chapter 2.2.3 --- Obtaining of single SAN cells --- p.38 / Chapter 2.2.4 --- Preparation of micro-pipettes --- p.40 / Chapter 2.2.5 --- The Patch Clamp Technique --- p.40 / Recording configurations --- p.41 / Electrical recordings --- p.44 / Formation of gigaseal on cell membrane and the development of whole-cell configuration --- p.45 / The changing of bathing solution and addition of drugs --- p.46 / The voltage clamp protocol --- p.47 / Data acquisition and analysis --- p.48 / Statistics --- p.48 / Chapter Chapter 3 --- --- Results --- p.49 / Chapter 3.1 --- The modulatory effect of different concentrations of [ATP]0 on IKs in guinea pig SAN cells --- p.50 / Chapter 3.1.1 --- Characterization of IKs currents --- p.50 / Chapter 3.1.2 --- Stimulatory effect of extracellular A TP on IKs current --- p.51 / Chapter 3.1.3 --- Current-Voltage relationship of ATP on IKs current --- p.57 / Chapter 3.1.4 --- Percentage increase of IKs current in the presence of different [ATP] o --- p.63 / Chapter 3.2 --- Investigation on whether the enhancement effect on IKs is due to ATP or its metabolite adenosine --- p.71 / Chapter 3.2.1 --- Effect of 100 μMATP-γS and adenosine on IKs --- p.71 / Chapter 3.2.2 --- Percentage increase of IKs in the presence of adenosine and ATP-γS --- p.76 / Chapter 3.3 --- Investigation on whether or not G-protein signalling pathway involved in ATP-mediated response on SAN IKs --- p.80 / Chapter 3.3.1 --- Effects of GTP-γS alone on IKs --- p.80 / Chapter 3.3.2 --- Effect of 100 μM ATP in the presence of GTP-yS on IKs --- p.83 / Chapter Chapter 4 --- --- Discussion --- p.86 / Chapter 4.1 --- The modulatory effect of different concentrations of [ATP]0 on IKs in guinea pig SAN cells --- p.87 / Chapter 4.2 --- Investigation on whether the enhancement effect on IKs is due to ATP or its metabolite adenosine --- p.92 / Chapter 4.3 --- Investigation on whether or not G-protein signalling pathway involved in ATP-mediated response on SAN IKs --- p.97 / Chapter 4.4 --- Limitations of this study --- p.102 / Chapter 4.5 --- Future studies --- p.102 / Chapter Chapter 5 --- --- References --- p.104
130

Low density lipoprotein as a targeted carrier for anti-tumour drugs.

January 2001 (has links)
by Lo Hoi Ka Elka. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 172-181). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iv / LIST OF TABLES AND FIGURES --- p.viii / ABBREVIATIONS --- p.xiv / Chapter CHAPTER 1 : --- INTRODUCTION / Chapter 1.1. --- DIFFERENT TREATMENTS OF THE CANCER THERAPY --- p.1 / Chapter 1.2. --- THE SIDE EFFECTS OF CANCER TREATMENT / Chapter 1.2.1. --- Surgery --- p.1 / Chapter 1.2.2. --- Radiotherapy --- p.2 / Chapter 1.2.3. --- Chemotherapy --- p.2 / Chapter 1.3. --- THE CHARACTERISTICS OF DOXORUBICIN (DOX) / Chapter 1.3.1. --- The structure of Dox --- p.6 / Chapter 1.3.2. --- The actions of Dox --- p.8 / Chapter 1.3.3. --- The adverse side effect of Dox --- p.8 / Chapter 1.4. --- THE RATIONALE OF USING LOW DENSITY LIPOPROTEIN (LDL) AS A TARGET CARRIER IN CANCER THERAPY / Chapter 1.4.1. --- The correlation between cholesterol and cancer --- p.9 / Chapter 1.4.2. --- Low density lipoprotein (LDL) as a target carrier --- p.11 / Chapter 1.4.3. --- The down and up regulation of LDL receptors --- p.14 / Chapter 1.4.4. --- The characteristics of Fuctus Craegus (FC) --- p.15 / Chapter 1.5. --- DIFFERENT METHODS OF THE PREPARATION OF THE LOW DENSITY LIPOPROTEIN-DRUG (LDL- DRUG) --- p.18 / Chapter 1.6. --- THE CHARACTERISTICS OF LOW DENSITY LIPOPROTEIN (LDL) / Chapter 1.6.1. --- The structure of LDL --- p.20 / Chapter 1.6.2. --- The metabolic pathway of LDL in human bodies --- p.23 / Chapter 1.7. --- THE MULTIDRUGS RESISTANCE IN TUMOR CELLS --- p.25 / Chapter 1.7.1. --- The mechanism of multidrug resistance --- p.27 / Chapter 1.7.2. --- The structure of P-glycoprotein --- p.27 / Chapter 1.7.3. --- The mechanism of P-glycoprotein --- p.30 / Chapter 1.8. --- COMBINED TREATMENT WITH HYPERTHERMIA --- p.31 / Chapter 1.9. --- AIM OF THE STUDY --- p.33 / Chapter CHAPTER 2 : --- MATERIALS AND METHODS / Chapter 2.1. --- MATERIALS / Chapter 2.1.1. --- Animals --- p.34 / Chapter 2.1.2. --- Buffers --- p.34 / Chapter 2.1.3. --- Cell culture reagents --- p.36 / Chapter 2.1.4. --- Chemicals --- p.38 / Chapter 2.1.5. --- Culture of cells --- p.40 / Chapter 2.2. --- METHODS / Chapter 2.2.1. --- In vitro studies / Chapter 2.2.1.1. --- "LDL, doxorubicin complex formation" --- p.41 / Chapter 2.2.1.2. --- Determination of the concentration of LDL-Dox --- p.42 / Chapter 2.2.1.3. --- In vitro cytotoxicity --- p.43 / Chapter 2.2.1.4. --- The cytotoxicity of the combined treatment with anticancer drugs --- p.44 / Chapter 2.2.1.5. --- The preparation of Fructus Crataegus (FC) --- p.46 / Chapter 2.2.1.6. --- Western blot --- p.47 / Chapter 2.2.1.7. --- Flow cytometry --- p.49 / Chapter 2.2.1.8. --- Confocal laser scanning microscopy --- p.52 / Chapter 2.2.2. --- In vivo studies / Chapter 2.2.2.1. --- Subcutaneous injection of R-HepG2 cells in nude mouse --- p.55 / Chapter 2.2.2.2. --- Treatment schedules --- p.55 / Chapter 2.2.2.3. --- Assay of investigating of the myocardial injury --- p.56 / Chapter 2.2.2.4. --- Tissue preparation procedure for light microscope (LM) --- p.57 / Chapter 2.2.3. --- Statistical analysis in our research --- p.59 / Chapter CHAPTER 3 : --- RESULTS / Chapter 3.1. --- in vitro STUDIES / Chapter 3.1.1. --- The preparation of low density lipoprotein-doxorubicin (LDL-Dox) --- p.60 / Chapter 3.1.2. --- Studies on human hepatoma cells line (HepG2 cells) / Chapter 3.1.2.1. --- The comparison of Dox and LDL-Dox accumulated in HepG2 cells --- p.63 / Chapter 3.1.2.2. --- Confocal laser scanning microscopic (CLSM) studies on the accumulation of Dox and LDL-Dox in HepG2 cells --- p.65 / Chapter 3.1.2.3. --- The comparsion of the cytotoxicity of Dox and LDL-Dox on HepG2 cells --- p.67 / Chapter 3.1.2.4. --- The comparison of the cytotoxicty of Dox and LDL-Dox with and without hyperthermia on HepG2 cells --- p.73 / Chapter 3.1.2.5. --- The comparison of accumulation of Dox and LDL-Dox in HepG2 cells treated with and without combination of with hyperthermia --- p.77 / Chapter 3.1.2.6. --- Confocal laser scanning microscopic (CLSM) studies on the accumulation of Dox and LDL-Dox in HepG2 treated cells with and without hyperthermia --- p.80 / Chapter 3.1.2.7. --- Modulation of LDL receptors on HepG2 cells------Up- regulation of LDL receptors by Fructus Craegtus (FC) / Chapter 3.1.2.7.1. --- The comparsion of LDL receptor expression on HepG2 cells after Fructus Craegtus (FC) pre-treatment --- p.83 / Chapter 3.1.2.7.2. --- The comparison of accumulation of LDL-Dox accumulated in HepG2 cells pre-treated with and without Fructus Craegtus (FC) --- p.85 / Chapter 3.1.2.7.3. --- Confocal laser scanning microscopic (CLSM) studies on the accumulation of LDL-Doxin HepG2 cells after Fructus Craegtus (FC) pre- treatment --- p.88 / Chapter 3.1.2.7.4. --- Cytotoxicity of combined treatment with LDL-Dox and Fructus Craegtus (FC) --- p.91 / Chapter 3.1.3. --- Studies on multidrug human resistant hepatoma cell line (R-HepG2 cells) / Chapter 3.1.3.1. --- The overexpression level of P-glycoprotein in resistant cell line R-HepG2 --- p.93 / Chapter 3.1.3.2. --- The comparison of Dox and LDL-Dox accumulated in R- HepG2 cells --- p.95 / Chapter 3.1.3.3. --- Confocal laser scanning microscopic (CLSM) studies on the accumulation of Dox and LDL-Dox in R-HepG2 cells --- p.97 / Chapter 3.1.3.4. --- The comparsion of the cytotoxicity of Dox and LDL-Dox on R-HepG2 cells --- p.99 / Chapter 3.1.3.5. --- The comparison of the cytotoxicty of Dox and LDL-Dox with and without hyperthermia on R-HepG2 cells --- p.109 / Chapter 3.1.3.6. --- The comparison of the accumulation of Dox and LDL- Dox in R-HepG2 cells treated in combination with hyperthermia --- p.113 / Chapter 3.1.3.7. --- Confocal laser scanning microscopic (CLSM) studies on the accumulation of Dox and LDL-Dox in R-HepG2 cells with and without hyperthermia --- p.117 / Chapter 3.1.3.8. --- Modulation of LDL receptors on R-HepG2 cells ------ Up-regulation of LDL receptors by Fructus Craegtus (FC) / Chapter 3.1.3.8.1. --- The comparsion of LDL receptor expression on R-HepG2 cells after Fructus Craegtus (FC) pre-treatment --- p.120 / Chapter 3.1.3.8.2. --- The comparsion of the accumulation of LDL- Dox in R-HepG2 cells after Fructus Craegtus (FC) pre-treatment --- p.122 / Chapter 3.1.3.8.3. --- Confocal laser scanning microscopic (CLSM) studies in the accumulation of LDL-Dox by Fructus Craegtus pre-treatment in R-HepG2 cells --- p.125 / Chapter 3.1.3.8.4. --- The comparison of cytotoxicity of combined treatment with LDL-Dox and Fructus Craegtus (FC) in R-HepG2 cells --- p.128 / Chapter 3.2. --- in vivo STUDIES / Chapter 3.2.1. --- The comparison of Dox and LDL-Dox on reducing the tumor sizes and weight in nude mice bearing R-HepG2 cells / Chapter 3.2.1.1. --- The comparison of Dox and LDL-Dox on reducing the tumor size in nude mice bearing R-HepG2 cells --- p.130 / Chapter 3.2.1.2. --- The comparison of Dox and LDL-Dox on reducing the tumor weight in nude mice bearing R-HepG2 cells --- p.138 / Chapter 3.2.2. --- Myocardial injury measured by Lactate dehydrogenase (LDH) activity in nude mice bearing R-HepG2 cells treated with Dox and LDL-Dox --- p.140 / Chapter 3.2.3. --- Myocardial injury measured by Creatine kinase (CK) activity in nude mice bearing R-HepG2 cells treated with Dox and LDL-Dox --- p.143 / Chapter 3.2.4. --- Histological studies of heart of nude mice bearing R-HepG2 cells treated with Dox and LDL-Dox / Chapter 3.2.4.1. --- Heart section of nude mice --- p.146 / Chapter 3.2.4.2. --- Heart section of nude mice bearing R-HepG2 cells --- p.148 / Chapter 3.2.4.3. --- Heart section of lmg/kg Dox treated nude mice bearing R- HepG2 cells --- p.150 / Chapter 3.2.4.4. --- Heart section of 2mg/kg Dox treated nude mice bearing R- HepG2 cells --- p.152 / Chapter 3.2.4.5. --- Heart section of lmg/kg LDL-Dox treated nude mice bearing R-HepG2 cells --- p.154 / Chapter CHAPTER 4 --- : DISCUSSION / Chapter 4.1. --- in vitro STUDIES / Chapter 4.1.1. --- The cytotoxicity of Dox and LDL-Dox on HepG2 cells and R- HepG2 cells --- p.156 / Chapter 4.1.2. --- The combined treatment on HepG2 cells and R-HepG2 cells --- p.157 / Chapter 4.1.3. --- The modulation of LDL-R expression --- p.159 / Chapter 4.2. --- in vivo STUDIES --- p.162 / Chapter CHAPTER 5 --- : CONCLUSION / Chapter 5.1. --- CONCLUSION / Chapter 5.1.1. --- In vitro studies --- p.167 / Chapter 5.1.2. --- In vivo studies --- p.169 / Chapter 5.2. --- FUTURE PROSPECTIVE --- p.170 / REFERENCES --- p.172

Page generated in 0.0461 seconds