• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 437
  • 87
  • 56
  • 36
  • 26
  • 14
  • 9
  • 8
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 919
  • 325
  • 203
  • 193
  • 176
  • 155
  • 148
  • 123
  • 105
  • 94
  • 91
  • 85
  • 83
  • 81
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINED DISTRIBUTED EMBEDDED NETWORKS

Rexroat, Jason T 01 January 2014 (has links)
The explosion in processing power of embedded systems has enabled distributed embedded networks to perform more complicated tasks. Middleware are sets of encapsulations of common and network/operating system-specific functionality into generic, reusable frameworks to manage such distributed networks. This thesis will survey and categorize popular middleware implementations into three adapted layers: host-infrastructure, distribution, and common services. This thesis will then apply a quantitative approach to grading and proposing a single middleware solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink middleware from the host-infrastructure layer is proposed as the middleware to manage the distributed embedded networks powering these platforms in future projects. Finally, this thesis presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors that power the target platforms.
402

Reference Governor for Flight Envelope Protection in an Autonomous Helicopter using Model Predictive Control / Referensövervakning för flygenvelopsskydd i en autonom helikopter via modellbaserad prediktionseglering

Carlsson, Victor, Sunesson, Oskar January 2014 (has links)
In this master’s thesis we study how Model Predictive Control (MPC) can be fitted into an existing control system to handle state constraints. We suggest the use of reference governing based on the predictive control methodology. The platform for the survey is Saabs unmanned helicopter Skeldar. We develop and investigate different Reference Governor(RG) formulations that can be used together with the already existing stabilizing control system. These different setups show various features regarding model predictive control. One setup is complemented with a pre-filter to prevent aggressive actuator control in response to set-point changes, while the other is developed to handle this in the MPC framework. We also show that one of these RGs can be extended to guarantee stability and convergence. Implementation and real time requirements are also considered in this thesis. For this two different QP-solvers have been used for online solving of the optimization problem that arises from the MPC formulations. For evaluation and analysis the solutions are implemented in an advanced simulation environment developed at Saab and in a hardware-in-the-loop avionics test rig for the Skeldar system.
403

Modeling, Estimation and Attitude Control of an Octorotor Using PID and L1 Adaptive Control Techniques / Modellering, estimering och attitydreglering av en oktakopter med användning av PID- och L1-adaptiv teknik

Bergman, Kristoffer, Ekström, Jonatan January 2014 (has links)
A multirotor is a type of aerial vehicle that has attracted a lot of attention in recent years. Multirotors have found applications in a variety of different fields and they are used by scientists and researchers, commercial UAV companies and radio control enthusiasts alike. In this thesis a multirotor with eight rotors, also called an octorotor, is used. A physical model of the octorotor has been developed using theory from rigid body mechanics and aerodynamics. The unknown parameters in this model have been found using several identification experiments. The model has been used for controller design and comparison in a simulation environment. An attitude estimation algorithm has been designed and implemented on the target hardware. The algorithm is referred to as a nonlinear complementary filter and it uses a quaternion rotation representation and onboard measurements to compute an estimate of the current aircraft attitude. Two different attitude controllers have been designed and evaluated. The first controller is based on PID techniques which are commonly used in multirotor flight stabilization systems. The second controller uses a novel control structure based on L1 adaptive control techniques. A baseline attitude PD controller is augmented with an L1 adaptive controller in the rate feedback loop. The two controller structures are compared using a simulation environment based on the developed model of the octorotor. The results show that the proposed structure gives a notable performance increase with respect to robustness against modeling errors and input disturbance rejection compared to the PID controller. However, the L1 adaptive controller is more complex to implement and gives less noise attenuation. The PID controller has been implemented on the platform's hardware and initial flight tests have been performed with promising results. / En multirotor är en typ av flygande farkost som har fått mycket uppmärksamhet under senare år. Multirotorer tillämpas inom flertalet områden och de används av bland annat forskare och vetenskapsmän, kommersiella UAV- företag samt hobbyentusiaster. I detta examensarbete används en multirotor med åtta rotorer, en så kallad oktakopter. En fysikalisk modell av oktakoptern har tagits fram med hjälp av teori från stelkroppsmekanik och aerodynamik. De okända parametrarna i modellen har skattats med hjälp av ett flertal identifieringsexperiment. Modellen har använts för att designa och jämföra regulatorer i en simuleringsmiljö. En algoritm för att skatta farkostens attityd har designats och implementerats på oktakopterns hårdvara. Algoritmen är en variant av ett olinjärt komplementärt filter och använder en kvaternionrepresentation av attitydvinklar och uppmätt sensordata för att skatta farkostens nuvarande attityd. Två olika attitydregulatorer har designats och utvärderats. Den första regulatorn är baserad på PID-teknik vilket är vanligt för stabilisering av multirotorsystem. Den andra regulatorn använder en ny regulatorstruktur baserad på L1-adaptiv teknik. En grundregulator av PD-typ utökas med en L1-adaptiv regulator i vinkelhastighetsloopen. De två regulatorstrukturerna jämförs i en simuleringsmiljö baserad på den framtagna modellen av oktakoptern. Resultaten visar att den föreslagna regulatorstrukturen ger en betydande prestandaökning gällande robusthet mot modellfel och undertryckning av ingångsstörningar jämfört med PID-regulatorn. Dock är L1-regulatorn mer komplex att implementera och den ger mindre brusundertryckning. PID-regulatorn har implementerats på plattformens hårdvara och inledande flygtester har genomförts med lovande resultat.
404

Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles

Galantai, Vlad Paul 04 December 2012 (has links)
This study is concerned with the design and development of a novel wing for UAVs that morphs seamlessly without the use of complex hydraulics, servo motors and controllers. The selected novel design is characterized by a high degree of flight adaptability and improved performance with a limited added weight. These characteristics were attained through the use of shape memory actuators in an antagonistic fashion. Unlike compliant actuators, the antagonistic setup requires the thermal energy to deform the wing but not to maintain its deformed shape. Structural analysis based upon safety factors specified by FAR23 standards and aerodynamic analysis using FLUENT were conducted on the novel design to validate its suitability as a viable wing for UAVs. In addition, thermal conditioning of the shape memory actuators was conducted using a specially designed programmable controller. This thesis does not concern itself with the design of a skin that accommodates the shape changes.
405

Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles

Galantai, Vlad Paul 04 December 2012 (has links)
This study is concerned with the design and development of a novel wing for UAVs that morphs seamlessly without the use of complex hydraulics, servo motors and controllers. The selected novel design is characterized by a high degree of flight adaptability and improved performance with a limited added weight. These characteristics were attained through the use of shape memory actuators in an antagonistic fashion. Unlike compliant actuators, the antagonistic setup requires the thermal energy to deform the wing but not to maintain its deformed shape. Structural analysis based upon safety factors specified by FAR23 standards and aerodynamic analysis using FLUENT were conducted on the novel design to validate its suitability as a viable wing for UAVs. In addition, thermal conditioning of the shape memory actuators was conducted using a specially designed programmable controller. This thesis does not concern itself with the design of a skin that accommodates the shape changes.
406

Robust and Adaptive Control Methods for Small Aerial Vehicles

Mukherjee, Prasenjit January 2012 (has links)
Recent advances in sensor and microcomputer technology and in control and aeroydynamics theories has made small unmanned aerial vehicles a reality. The small size, low cost and manoueverbility of these systems has positioned them to be potential solutions in a large class of applications. However, the small size of these vehicles pose significant challenges. The small sensors used on these systems are much noisier than their larger counterparts.The compact structure of these vehicles also makes them more vulnerable to environmental effects. This work develops several different control strategies for two sUAV platforms and provides the rationale for judging each of the controllers based on a derivation of the dynamics, simulation studies and experimental results where possible. First, the coaxial helicopter platform is considered. This sUAV’s dual rotor system (along with its stabilizer bar technology) provides the ideal platform for safe, stable flight in a compact form factor. However, the inherent stability of the vehicle is achieved at the cost of weaker control authority and therefore an inability to achieve aggressive trajectories especially when faced with heavy wind disturbances. Three different linear control strategies are derived for this platform. PID, LQR and H∞ methods are tested in simulation studies. While the PID method is simple and intuitive, the LQR method is better at handling the decoupling required in the system. However the frequency domain design of the H∞ control method is better at suppressing disturbances and tracking more aggressive trajectories. The dynamics of the quadrotor are much faster than those of the coaxial helicopter. In the quadrotor, four independent fixed pitch rotors provide the required thrust. Differences between each of the rotors creates moments in the roll, pitch and yaw directions. This system greatly simplifies the mechanical complexity of the UAV, making quadrotors cheaper to maintain and more accessible. The quadrotor dynamics are derived in this work. Due to the lack of any mechanical stabilization system, these quadrotor dynamics are not inherently damped around hover. As such, the focus of the controller development is on using nonlinear techniques. Linear quadratic regulation methods are derived and shown to be inadequate when used in zones moderately outside hover. Within nonlinear methods, feedback linearization techniques are developed for the quadrotor using an inner/outer loop decoupling structure that avoids more complex variants of the feedback linearization methodology. Most nonlinear control methods (including feedback linearization) assume perfect knowledge of vehicle parameters. In this regard, simulation studies show that when this assumption is violated the results of the flight significantly deteriorate for quadrotors flying using the feedback linearization method. With this in mind, an adaptation law is devised around the nonlinear control method that actively modifies the plant parameters in an effort to drive tracking errors to zero. In simple cases with sufficiently rich trajectory requirements the parameters are able to adapt to the correct values (as verified by simulation studies). It can also adapt to changing parameters in flight to ensure that vehicle stability and controller performance is not compromised. However, the direct adaptive control method devised in this work has the added benefit of being able to modify plant parameters to suppress the effects of external disturbances as well. This is clearly shown when wind disturbances are applied to the quadrotor simulations. Finally, the nonlinear quadrotor controllers devised above are tested on a custom built quadrotor and autopilot platform. While the custom quadrotor is able to fly using the standard control methods, the specific controllers devised here are tested on a test bench that constrains the movement of the vehicle. The results of the tests show that the controller is able to sufficiently change the necessary parameter to ensure effective tracking in the presence of unmodelled disturbances and measurement error.
407

Development of a dynamic model of a ducted fan VTOL UAV

Zhao, Hui Wen, zhwtkd@hotmail.com January 2010 (has links)
The technology of UAV (Unmanned Aerial Vehicle) has developed since its conception many years ago. UAVs have several features such as, computerised and autonomous control without the need for an on-board pilot. Therefore, there is no risk of loss of life and they are easier to maintain than manned aircraft. In addition, UAVs have an extended range/endurance capability, sometimes for several days. This makes UAVs attractive for missions that are typically
408

Estimation of Drone Location Using Received Signal Strength Indicator

Jagini, Varun Kumar 08 1900 (has links)
The main objective of this thesis is to propose a UAV (also called as drones) location estimation system based on LoRaWAN using received signal strength indicator in a GPS denied environment. The drones are finding new applications in areas such as surveillance, search, rescue missions, package delivery, and precision agriculture. Nearly all applications require the localization of UAV during flight. Localization is the method of determining a UAVs physical position using a real or virtual coordinate system. This thesis proposes a LoRaWAN-based UAV location method and presents experimental findings from a prototype. The thesis mainly consists of two different sections: one is the distance estimation and the other is the location estimation. First, the distance is estimated based on the mean RSSI values which are recorded at the ground stations using the path loss model. Later using the slant distance estimation technique, the path loss model parameters L and C are estimated whose values are unknown at the beginning. These values completely depend on the environment. Finally, the trilateration system architecture is employed to find the 3-D location of the UAV.
409

Análise dos modelos para cálculo de níveis de segurança relacionados à operação de veículos aéreos não tripulados. / Analysis of models for calculation of levels of security related to operation of unmanned aerial vehicles.

Cristiane Paschoali de Oliveira 16 June 2009 (has links)
Desde o início do século XX que há registros do uso de Veículos Aéreos Não Tripulados (VANTs) utilizados com finalidade militar. Mas esta não é a única forma que se pode utilizá-los, o ambiente civil também é próspero em possíveis utilizações deste tipo de aeronave. Faltam ainda estudos e comprovações de que a integração dos VANTs no espaço aéreo juntamente com a aviação tripulada convencional não vá trazer alterações nos níveis de segurança já estabelecidos. Juntam-se a este desafio alguns outros, tais como padronizações de normas, classificações e legislação que regulamente o vôo das aeronaves não tripuladas. A presente dissertação faz uma coletânea de alguns modelos relacionados a cálculos de níveis de segurança no vôo de VANTs, bem como compara esses modelos entre si visando o estabelecimento de um método de escolha do modelo mais adequado para aplicação em alguns cenários civis de utilização. Esse trabalho ainda faz a aplicação desse método considerando os modelos relacionados à segurança dos VANTs. / There are records of the use of Unmanned Aerial Vehicles (UAVs) used for military activities since the beginning of the 20th century. But that is not the only way to use it; the civil environment is also promising as to the use of this kind of aircraft. More studies and validations have to be performed about the alterations in the safety levels with the integration of UAVs in the air space with classic manned air vehicles. There are others challenges such as the standardization of norms, classification and legislation to regulate the Unmanned Aerial Vehicle flights. This dissertation presents some models related to the calculation of the safety levels in UAVs flight, it compares them to establish a method for choosing the most suitable model to apply in some civil scenarios. This work also brings the application of this method considering the models related to the safety of UAVs.
410

A resource allocation system for heterogeneous autonomous vehicles

Kaddouh, Bilal January 2017 (has links)
This research aims to understand the different requirements of civilian multiple autonomous vehicle systems in order to propose an adequate solution for the resource allocation problem. A new classification of unmanned system applications is presented with focus on unmanned aerial vehicles (UAVs). The main resource allocation systems requirements in each category are presented and discussed. A novel dynamic resource allocation model is introduced for efficient sharing of services provided by ad hoc assemblies of heterogeneous autonomous vehicles. A key contribution is the provision of capability to dynamically select sensors and platforms within constraints imposed by time dependencies, refuelling, and transportation services. The resource allocation problem is modelled as a connected network of nodes and formulated as an Integer Linear Program (ILP). Solution fitness is prioritized over computation time. Simulation results of an illustrative scenario are used to demonstrate the ability of the model to plan for sensor selection, refuelling, collaboration and cooperation between heterogeneous resources. Prioritization of operational cost leads to missions that use cheaper resources but take longer to complete. Prioritization of completion time leads to shorter missions at the expense of increased overall resource cost. Missions can be successfully re-planned through dynamic reallocation of new requests during a mission. Monte Carlo studies on systems of increasing complexity show that good solutions can be obtained using low time resolutions, with small time windows at a relatively low computational cost. In comparison with other approaches, the developed ILP model provides provably optimal solutions at the expense of longer computation time. Flight test procedures were developed for performing low cost experiments on a small scale, using commercial off the shelf equipment, with ability to infer conclusions on the large-scale implementation. Flight test experiments were developed and performed that assessed the performance of the developed ILP model and successfully demonstrated its main capabilities.

Page generated in 0.0284 seconds