Spelling suggestions: "subject:" anomaly detection"" "subject:" unomaly detection""
431 |
[en] A MOBILE AND ONLINE OUTLIER DETECTION OVER MULTIPLE DATA STREAMS: A COMPLEX EVENT PROCESSING APPROACH FOR DRIVING BEHAVIOR DETECTION / [pt] DETECÇÃO MÓVEL E ONLINE DE ANOMALIA EM MÚLTIPLOS FLUXOS DE DADOS: UMA ABORDAGEM BASEADA EM PROCESSAMENTO DE EVENTOS COMPLEXOS PARA DETECÇÃO DE COMPORTAMENTO DE CONDUÇÃOIGOR OLIVEIRA VASCONCELOS 24 July 2017 (has links)
[pt] Dirigir é uma tarefa diária que permite uma locomoção mais rápida e mais confortável, no entanto, mais da metade dos acidentes fatais estão relacionados à imprudência. Manobras imprudentes podem ser detectadas com boa precisão, analisando dados relativos à interação motorista-veículo, por exemplo, curvas, aceleração e desaceleração abruptas. Embora existam algoritmos para detecção online de anomalias, estes normalmente são projetados para serem executados em computadores com grande poder computacional. Além disso, geralmente visam escala através da computação paralela, computação em grid ou computação em nuvem. Esta tese apresenta uma abordagem baseada em complex event processing para a detecção online de anomalias e classificação do comportamento de condução. Além disso, objetivamos identificar se dispositivos móveis com poder computacional limitado, como os smartphones, podem ser usados para uma detecção online do comportamento de condução. Para isso, modelamos e avaliamos três algoritmos de detecção online de anomalia no paradigma de processamento de fluxos de dados, que recebem os dados dos sensores do smartphone e dos sensores à bordo do veículo como entrada. As vantagens que o processamento de fluxos de dados proporciona reside no fato de que este reduz a quantidade de dados transmitidos do dispositivo móvel para servidores/nuvem, bem como se reduz o consumo de energia/bateria devido à transmissão de dados dos sensores e possibilidade de operação mesmo se o dispositivo móvel estiver desconectado. Para classificar os motoristas, um mecanismo estatístico utilizado na mineração de documentos que avalia a importância de uma palavra em uma coleção de documentos, denominada frequência de documento inversa, foi adaptado para identificar a importância de uma anomalia em um fluxo de dados, e avaliar quantitativamente o grau de prudência ou imprudência das manobras dos motoristas. Finalmente, uma avaliação da abordagem (usando o algoritmo que obteve melhor resultado na primeira etapa) foi realizada através de um estudo de caso do comportamento de condução de 25 motoristas em cenário real. Os resultados mostram uma acurácia de classificação de 84 por cento e um tempo médio de processamento de 100 milissegundos. / [en] Driving is a daily task that allows individuals to travel faster and more comfortably, however, more than half of fatal crashes are related to recklessness driving behaviors. Reckless maneuvers can be detected with accuracy by analyzing data related to driver-vehicle interactions, abrupt turns, acceleration, and deceleration, for instance. Although there are algorithms for online anomaly detection, they are usually designed to run on computers with high computational power. In addition, they typically target scale through parallel computing, grid computing, or cloud computing. This thesis presents an online anomaly detection approach based on complex event processing to enable driving behavior classification. In addition, we investigate if mobile devices with limited computational power, such as smartphones, can be used for online detection of driving behavior. To do so, we first model and evaluate three online anomaly detection algorithms in the data stream processing paradigm, which receive data from the smartphone and the in-vehicle embedded sensors as input. The advantages that stream processing provides lies in the fact that reduce the amount of data transmitted from the mobile device to servers/the cloud, as well as reduce the energy/battery usage due to transmission of sensor data and possibility to operate even if the mobile device is disconnected. To classify the drivers, a statistical mechanism used in document mining that evaluates the importance of a word in a collection of documents, called inverse document frequency, has been adapted to identify the importance of an anomaly in a data stream, and then quantitatively evaluate how cautious or reckless drivers maneuvers are. Finally, an evaluation of the approach (using the algorithm that achieved better result in the first step) was carried out through a case study of the 25 drivers driving
behavior. The results show an accuracy of 84 percent and an average processing time of 100 milliseconds.
|
432 |
Abordagem semi-supervisionada para detecção de módulos de software defeituososOLIVEIRA, Paulo César de 31 August 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-07-24T12:11:04Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5) / Made available in DSpace on 2017-07-24T12:11:04Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação Mestrado Paulo César de Oliveira.pdf: 2358509 bytes, checksum: 36436ca63e0a8098c05718bbee92d36e (MD5)
Previous issue date: 2015-08-31 / Com a competitividade cada vez maior do mercado, aplicações de alto nível de
qualidade são exigidas para a automação de um serviço. Para garantir qualidade de
um software, testá-lo visando encontrar falhas antecipadamente é essencial no ciclo
de vida de desenvolvimento. O objetivo do teste de software é encontrar falhas que
poderão ser corrigidas e consequentemente, aumentar a qualidade do software em
desenvolvimento. À medida que o software cresce, uma quantidade maior de testes
é necessária para prevenir ou encontrar defeitos, visando o aumento da qualidade.
Porém, quanto mais testes são criados e executados, mais recursos humanos e de
infraestrutura são necessários. Além disso, o tempo para realizar as atividades de
teste geralmente não é suficiente, fazendo com que os defeitos possam escapar.
Cada vez mais as empresas buscam maneiras mais baratas e efetivas para detectar
defeitos em software. Muitos pesquisadores têm buscado nos últimos anos,
mecanismos para prever automaticamente defeitos em software. Técnicas de
aprendizagem de máquina vêm sendo alvo das pesquisas, como uma forma de
encontrar defeitos em módulos de software. Tem-se utilizado muitas abordagens
supervisionadas para este fim, porém, rotular módulos de software como defeituosos
ou não para fins de treinamento de um classificador é uma atividade muito custosa e
que pode inviabilizar a utilização de aprendizagem de máquina. Neste contexto, este
trabalho propõe analisar e comparar abordagens não supervisionadas e semisupervisionadas
para detectar módulos de software defeituosos. Para isto, foram
utilizados métodos não supervisionados (de detecção de anomalias) e também
métodos semi-supervisionados, tendo como base os classificadores AutoMLP e
Naive Bayes. Para avaliar e comparar tais métodos, foram utilizadas bases de dados
da NASA disponíveis no PROMISE Software Engineering Repository. / Because the increase of market competition then high level of quality applications
are required to provide automate services. In order to achieve software quality testing
is essential in the development lifecycle with the purpose of finding defect as earlier
as possible. The testing purpose is not only to find failures that can be fixed, but
improve software correctness and quality. Once software gets more complex, a
greater number of tests will be necessary to prevent or find defects. Therefore, the
more tests are designed and exercised, the more human and infrastructure
resources are needed. However, time to run the testing activities are not enough,
thus, as a result, it causes escape defects. Companies are constantly trying to find
cheaper and effective ways to software defect detection in earlier stages. In the past
years, many researchers are trying to finding mechanisms to automatically predict
these software defects. Machine learning techniques are being a research target, as
a way of finding software modules detection. Many supervised approaches are being
used with this purpose, but labeling software modules as defective or not defective to
be used in training phase is very expensive and it can make difficult machine learning
use. Considering that this work aims to analyze and compare unsupervised and
semi-supervised approaches to software module defect detection. To do so,
unsupervised methods (of anomaly detection) and semi-supervised methods using
AutoMLP and Naive Bayes algorithms were used. To evaluate and compare these
approaches, NASA datasets were used at PROMISE Software Engineering
Repository.
|
433 |
Učení se automatů pro rychlou detekci anomálií v síťovém provozu / Automata Learning for Fast Detection of Anomalies in Network TrafficHošták, Viliam Samuel January 2021 (has links)
The focus of this thesis is the fast network anomaly detection based on automata learning. It describes and compares several chosen automata learning algorithms including their adaptation for the learning of network characteristics. In this work, various network anomaly detection methods based on learned automata are proposed which can detect sequential as well as statistical anomalies in target communication. For this purpose, they utilize automata's mechanisms, their transformations, and statistical analysis. Proposed detection methods were implemented and evaluated using network traffic of the protocol IEC 60870-5-104 which is commonly used in industrial control systems.
|
434 |
ARTIFICIAL INTELLIGENCE EMPOWERED AUGMENTED REALITY APPLICATION FOR ELECTRICAL ENGINEERING LAB EDUCATIONJohn Luis Estrada (11836646) 20 December 2021 (has links)
With the rising popularity of online and hybrid learning, this study explores an innovative
method to improve students’ learning experiences with Electrical and Computer Engineering lab
equipment by employing cutting-edge technologies in augmented reality (AR) and artificial
intelligence (AI). Automatic object detection component, aligned with AR application, is
developed to recognize equipment, including multimeter, oscilloscope, wave generator, and power
supply. The deep neural network model, namely MobileNet SSD v2, is implemented in the study
for equipment recognition. We used object detection API from TensorFlow (TF) framework to
build the neural network model. When a piece of equipment is detected, the corresponding
augmented reality (AR) based tutorial will be displayed on the screen. In this study, a tutorial for
multi-meter is implemented. In order to provide users an intuitive and easy-to-follow tutorial, we
superimpose virtual models on the real multimeter. In addition, images and web links are added in
the tutorial to facilitate users with a better learning experience. Unity3D game engine is used as
the primary development tool to merge both framework systems and build immersive scenarios in
the tutorial.
|
435 |
Dolování neobvyklého chování v datech trajektorií / Mining Anomalous Behaviour in Trajectory DataKoňárek, Petr January 2017 (has links)
The goal of this work is to provide an overview of approaches for mining anomalous behavior in trajectory data. Next part is proposes a mining task for outliner detection in trajectories and selects appropriate methods for this task. Selected methods are implemented as application for outliner trajectories detection.
|
436 |
Analýza provozních dat a detekce anomálií při běhu úloh na superpočítači / Analysis of Operational Data and Detection od Anomalies during Supercomputer Job ExecutionStehlík, Petr January 2018 (has links)
V posledních letech jsou superpočítače stále větší a složitější, s čímž souvisí problém využití plného potenciálu systému. Tento problém se umocňuje díky nedostatku nástrojů pro monitorování, které jsou specificky přizpůsobeny uživatelům těchto systémů. Cílem práce je vytvořit nástroj, nazvaný Examon Web, pro analýzu a vizualizaci provozních dat superpočítače a provést nad těmito daty hloubkovou analýzu pomocí neurálních sítí. Ty určí, zda daná úloha běžela korektně, či vykazovala známky podezřelého a nežádoucího chování jako je nezarovnaný přístup do operační paměti nebo např. nízké využití alokovaých zdrojů. O těchto faktech je uživatel informován pomocí GUI. Examon Web je postavený na frameworku Examon, který sbírá a procesuje metrická data ze superpočítače a následně je ukládá do databáze KairosDB. Implementace zahrnuje disciplíny od návrhu a implementace GUI, přes datovou analýzu, těžení dat a neurální sítě až po implementaci rozhraní na serverové straně. Examon Web je zaměřen zejména na uživatele, ale může být také využíván administrátory. GUI je vytvořeno ve frameworku Angular s knihovnami Dygraphs a Bootstrap. Uživatel díky tomu může analyzovat časové řady různých metrik své úlohy a stejně jako administrátor se může informovat o současném stavu superpočítače. Tento stav je zobrazen jako několik globálně agregovaných metrik v posledních 30 minutách nebo jako 3D model (či 2D model) superpočítače, který získává data ze samotných uzlů pomocí protokolu MQTT. Pro kontinuální získávání dat bylo využito rozhraní WebSocket s vlastním mechanismem přihlašování a odhlašování konkretních metrik zobrazovaných v modelu. Při analýze spuštěné úlohy má uživatel dostupné tři různé pohledy na danou úlohu. První nabízí celkový přehled o úloze a informuje o využitých zdrojích, času běhu a vytížení části superpočítače, kterou úloha využila společně s informací z neurálních sítí o podezřelosti úlohy. Další dva pohledy zobrazují metriky z výkonnostiního energetického hlediska. Pro naučení neurálních sítí bylo potřeba vytvořit novou datovou sadu ze superpočítače Galileo. Tato sada obsahuje přes 1100 úloh monitorovaných na tomto superpočítači z čehož 500 úloh bylo ručně anotováno a následně použito pro trénování sítí. Neurální sítě využívají model back-propagation, vhodný pro anotování časových sérií fixní délky. Celkem bylo vytvořeno 12 sítí pro metriky zahrnující vytížení procesoru, paměti a dalších části a např. také podíl celkového času procesoru v úsporném režimu C6. Tyto sítě jsou na sobě nezávislé a po experimentech jejich finální konfigurace 80-20-4-3-1 (80 vstupních až 1 výstupní neuron) podávaly nejlepší výsledky. Poslední síť (v konfiguraci 12-4-3-1) anotovala výsledky předešlých sítí. Celková úspěšnost systému klasifikace do 2 tříd je 84 %, což je na použitý model velmi dobré. Výstupem této práce jsou dva produkty. Prvním je uživatelské rozhraní a jeho serverová část Examon Web, která jakožto rozšiřující vrstva systému Examon pomůže s rozšířením daného systému mezi další uživatele či přímo další superpočítačová centra. Druhým výstupem je částečně anotovaná datová sada, která může pomoci dalším lidem v jejich výzkumu a je výsledkem spolupráce VUT, UNIBO a CINECA. Oba výstupy budou zveřejněny s otevřenými zdrojovými kódy. Examon Web byl prezentován na konferenci 1st Users' Conference v Ostravě pořádanou IT4Innovations. Další rozšíření práce může být anotace datové sady a také rozšíření Examon Web o rozhodovací stromy, které určí přesný důvod špatného chování dané úlohy.
|
437 |
Detekce Útoků v Síťovém Provozu / Intrusion Detection in Network TrafficHomoliak, Ivan Unknown Date (has links)
Tato práce se zabývá problematikou anomální detekce síťových útoků s využitím technik strojového učení. Nejdříve jsou prezentovány state-of-the-art datové kolekce určené pro ověření funkčnosti systémů detekce útoků a také práce, které používají statistickou analýzu a techniky strojového učení pro nalezení síťových útoků. V další části práce je prezentován návrh vlastní kolekce metrik nazývaných Advanced Security Network Metrics (ASNM), který je součástí konceptuálního automatického systému pro detekci průniků (AIPS). Dále jsou navrženy a diskutovány dva různé přístupy k obfuskaci - tunelování a modifikace síťových charakteristik - sloužících pro úpravu provádění útoků. Experimenty ukazují, že použité obfuskace jsou schopny předejít odhalení útoků pomocí klasifikátoru využívajícího metriky ASNM. Na druhé straně zahrnutí těchto obfuskací do trénovacího procesu klasifikátoru může zlepšit jeho detekční schopnosti. Práce také prezentuje alternativní pohled na obfuskační techniky modifikující síťové charakteristiky a demonstruje jejich použití jako aproximaci síťového normalizéru založenou na vhodných trénovacích datech.
|
438 |
Performance problem diagnosis in cloud infrastructuresIbidunmoye, Olumuyiwa January 2016 (has links)
Cloud datacenters comprise hundreds or thousands of disparate application services, each having stringent performance and availability requirements, sharing a finite set of heterogeneous hardware and software resources. The implication of such complex environment is that the occurrence of performance problems, such as slow application response and unplanned downtimes, has become a norm rather than exception resulting in decreased revenue, damaged reputation, and huge human-effort in diagnosis. Though causes can be as varied as application issues (e.g. bugs), machine-level failures (e.g. faulty server), and operator errors (e.g. mis-configurations), recent studies have attributed capacity-related issues, such as resource shortage and contention, as the cause of most performance problems on the Internet today. As cloud datacenters become increasingly autonomous there is need for automated performance diagnosis systems that can adapt their operation to reflect the changing workload and topology in the infrastructure. In particular, such systems should be able to detect anomalous performance events, uncover manifestations of capacity bottlenecks, localize actual root-cause(s), and possibly suggest or actuate corrections. This thesis investigates approaches for diagnosing performance problems in cloud infrastructures. We present the outcome of an extensive survey of existing research contributions addressing performance diagnosis in diverse systems domains. We also present models and algorithms for detecting anomalies in real-time application performance and identification of anomalous datacenter resources based on operational metrics and spatial dependency across datacenter components. Empirical evaluations of our approaches shows how they can be used to improve end-user experience, service assurance and support root-cause analysis. / Cloud Control (C0590801)
|
439 |
Anomaly Detection and Security Deep Learning Methods Under Adversarial SituationMiguel Villarreal-Vasquez (9034049) 27 June 2020 (has links)
<p>Advances in Artificial Intelligence (AI), or more precisely on Neural Networks (NNs), and fast processing technologies (e.g. Graphic Processing Units or GPUs) in recent years have positioned NNs as one of the main machine learning algorithms used to solved a diversity of problems in both academia and the industry. While they have been proved to be effective in solving many tasks, the lack of security guarantees and understanding of their internal processing disrupts their wide adoption in general and cybersecurity-related applications. In this dissertation, we present the findings of a comprehensive study aimed to enable the absorption of state-of-the-art NN algorithms in the development of enterprise solutions. Specifically, this dissertation focuses on (1) the development of defensive mechanisms to protect NNs against adversarial attacks and (2) application of NN models for anomaly detection in enterprise networks.</p><p>In this state of affairs, this work makes the following contributions. First, we performed a thorough study of the different adversarial attacks against NNs. We concentrate on the attacks referred to as trojan attacks and introduce a novel model hardening method that removes any trojan (i.e. misbehavior) inserted to the NN models at training time. We carefully evaluate our method and establish the correct metrics to test the efficiency of defensive methods against these types of attacks: (1) accuracy with benign data, (2) attack success rate, and (3) accuracy with adversarial data. Prior work evaluates their solutions using the first two metrics only, which do not suffice to guarantee robustness against untargeted attacks. Our method is compared with the state-of-the-art. The obtained results show our method outperforms it. Second, we proposed a novel approach to detect anomalies using LSTM-based models. Our method analyzes at runtime the event sequences generated by the Endpoint Detection and Response (EDR) system of a renowned security company running and efficiently detects uncommon patterns. The new detecting method is compared with the EDR system. The results show that our method achieves a higher detection rate. Finally, we present a Moving Target Defense technique that smartly reacts upon the detection of anomalies so as to also mitigate the detected attacks. The technique efficiently replaces the entire stack of virtual nodes, making ongoing attacks in the system ineffective.</p><p> </p>
|
440 |
Community Detection of Anomaly in Large-Scale Network Dissertation - Adefolarin Bolaji .pdfAdefolarin Alaba Bolaji (10723926) 29 April 2021 (has links)
<p>The
detection of anomalies in real-world networks is applicable in different
domains; the application includes, but is not limited to, credit card fraud
detection, malware identification and classification, cancer detection from
diagnostic reports, abnormal traffic detection, identification of fake media
posts, and the like. Many ongoing and current researches are providing tools
for analyzing labeled and unlabeled data; however, the challenges of finding
anomalies and patterns in large-scale datasets still exist because of rapid
changes in the threat landscape. </p><p>In this study, I implemented a
novel and robust solution that combines data science and cybersecurity to solve
complex network security problems. I used Long Short-Term Memory (LSTM) model, Louvain
algorithm, and PageRank algorithm to identify and group anomalies in large-scale
real-world networks. The network has billions of packets. The developed model
used different visualization techniques to provide further insight into how the
anomalies in the network are related. </p><p>Mean absolute error (MAE) and root mean square error (RMSE) was used to validate the anomaly detection models, the
results obtained for both are 5.1813e-04
and 1e-03 respectively. The low loss from the training
phase confirmed the low RMSE at loss: 5.1812e-04, mean absolute error:
5.1813e-04, validation loss: 3.9858e-04, validation mean absolute error:
3.9858e-04. The result from the community detection
shows an overall modularity value of 0.914 which is proof of the existence of
very strong communities among the anomalies. The largest sub-community of the
anomalies connects 10.42% of the total nodes of the anomalies. </p><p>The broader aim and impact of this study was to provide
sophisticated, AI-assisted countermeasures to cyber-threats in large-scale
networks. To close the existing gaps created by the shortage of skilled and
experienced cybersecurity specialists and analysts in the cybersecurity field,
solutions based on out-of-the-box thinking are inevitable; this research was aimed
at yielding one of such solutions. It was built to detect specific and
collaborating threat actors in large networks and to help speed up how the
activities of anomalies in any given large-scale network can be curtailed in
time.</p><div><div><div>
</div>
</div>
</div>
<br>
|
Page generated in 0.1057 seconds