• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 335
  • 18
  • 17
  • 17
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 494
  • 494
  • 219
  • 218
  • 163
  • 139
  • 116
  • 91
  • 81
  • 75
  • 71
  • 70
  • 63
  • 62
  • 62
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Insurance Fraud Detection using Unsupervised Sequential Anomaly Detection / Detektion av försäkringsbedrägeri med oövervakad sekvensiell anomalitetsdetektion

Hansson, Anton, Cedervall, Hugo January 2022 (has links)
Fraud is a common crime within the insurance industry, and insurance companies want to quickly identify fraudulent claimants as they often result in higher premiums for honest customers. Due to the digital transformation where the sheer volume and complexity of available data has grown, manual fraud detection is no longer suitable. This work aims to automate the detection of fraudulent claimants and gain practical insights into fraudulent behavior using unsupervised anomaly detection, which, compared to supervised methods, allows for a more cost-efficient and practical application in the insurance industry. To obtain interpretable results and benefit from the temporal dependencies in human behavior, we propose two variations of LSTM based autoencoders to classify sequences of insurance claims. Autoencoders can provide feature importances that give insight into the models' predictions, which is essential when models are put to practice. This approach relies on the assumption that outliers in the data are fraudulent. The models were trained and evaluated on a dataset we engineered using data from a Swedish insurance company, where the few labeled frauds that existed were solely used for validation and testing. Experimental results show state-of-the-art performance, and further evaluation shows that the combination of autoencoders and LSTMs are efficient but have similar performance to the employed baselines. This thesis provides an entry point for interested practitioners to learn key aspects of anomaly detection within fraud detection by thoroughly discussing the subject at hand and the details of our work. / <p>Gjordes digitalt via Zoom. </p>
442

Cooperative security log analysis using machine learning : Analyzing different approaches to log featurization and classification / Kooperativ säkerhetslogganalys med maskininlärning

Malmfors, Fredrik January 2022 (has links)
This thesis evaluates the performance of different machine learning approaches to log classification based on a dataset derived from simulating intrusive behavior towards an enterprise web application. The first experiment consists of performing attacks towards the web app in correlation with the logs to create a labeled dataset. The second experiment consists of one unsupervised model based on a variational autoencoder and four super- vised models based on both conventional feature-engineering techniques with deep neural networks and embedding-based feature techniques followed by long-short-term memory architectures and convolutional neural networks. With this dataset, the embedding-based approaches performed much better than the conventional one. The autoencoder did not perform well compared to the supervised models. To conclude, embedding-based ap- proaches show promise even on datasets with different characteristics compared to natural language.
443

Dynamic network resources optimization based on machine learning and cellular data mining / Optimisation dynamique des ressources des réseaux cellulaires basée sur des techniques d'analyse de données et des techniques d'apprentissage automatique

Hammami, Seif Eddine 20 September 2018 (has links)
Les traces réelles de réseaux cellulaires représentent une mine d’information utile pour améliorer les performances des réseaux. Des traces comme les CDRs (Call detail records) contiennent des informations horodatées sur toutes les interactions des utilisateurs avec le réseau sont exploitées dans cette thèse. Nous avons proposé des nouvelles approches dans l’étude et l’analyse des problématiques des réseaux de télécommunications, qui sont basé sur les traces réelles et des algorithmes d’apprentissage automatique. En effet, un outil global d’analyse de données, pour la classification automatique des stations de base, la prédiction de la charge de réseau et la gestion de la bande passante est proposé ainsi qu’un outil pour la détection automatique des anomalies de réseau. Ces outils ont été validés par des applications directes, et en utilisant différentes topologies de réseaux comme les réseaux WMN et les réseaux basés sur les drone-cells. Nous avons montré ainsi, qu’en utilisant des outils d’analyse de données avancés, il est possible d’optimiser dynamiquement les réseaux mobiles et améliorer la gestion de la bande passante. / Real datasets of mobile network traces contain valuable information about the network resources usage. These traces may be used to enhance and optimize the network performances. A real dataset of CDR (Call Detail Records) traces, that include spatio-temporal information about mobile users’ activities, are analyzed and exploited in this thesis. Given their large size and the fact that these are real-world datasets, information extracted from these datasets have intensively been used in our work to develop new algorithms that aim to revolutionize the infrastructure management mechanisms and optimize the usage of resource. We propose, in this thesis, a framework for network profiles classification, load prediction and dynamic network planning based on machine learning tools. We also propose a framework for network anomaly detection. These frameworks are validated using different network topologies such as wireless mesh networks (WMN) and drone-cell based networks. We show that using advanced data mining techniques, our frameworks are able to help network operators to manage and optimize dynamically their networks
444

Ensemble Classifier Design and Performance Evaluation for Intrusion Detection Using UNSW-NB15 Dataset

Zoghi, Zeinab 30 November 2020 (has links)
No description available.
445

Automatic Classification of Full- and Reduced-Lead Electrocardiograms Using Morphological Feature Extraction

Hammer, Alexander, Scherpf, Matthieu, Ernst, Hannes, Weiß, Jonas, Schwensow, Daniel, Schmidt, Martin 26 August 2022 (has links)
Cardiovascular diseases are the global leading cause of death. Automated electrocardiogram (ECG) analysis can support clinicians to identify abnormal excitation of the heart and prevent premature cardiovascular death. An explainable classification is particularly important for support systems. Our contribution to the PhysioNet/CinC Challenge 2021 (team name: ibmtPeakyFinders) therefore pursues an approach that is based on interpretable features to be as explainable as possible. To meet the challenge goal of developing an algorithm that works for both 12-lead and reduced lead ECGs, we processed each lead separately. We focused on signal processing techniques based on template delineation that yield the template's fiducial points to take the ECG waveform morphology into account. In addition to beat intervals and amplitudes obtained from the template, various heart rate variability and QT interval variability features were extracted and supplemented by signal quality indices. Our classification approach utilized a decision tree ensemble in a one-vs-rest approach. The model parameters were determined using an extensive grid search. Our approach achieved challenge scores of 0.47, 0.47, 0.34, 0.40, and 0.41 on hidden 12-, 6-, 4-, 3-, and 2-lead test sets, respectively, which corresponds to the ranks 12, 10, 23, 18, and 16 out of 39 teams.
446

Digital Signal Characterization for Seizure Detection Using Frequency Domain Analysis

Li, Jing January 2021 (has links)
Nowadays, a significant proportion of the population in the world is affected by cerebral diseases like epilepsy. In this study, frequency domain features of electroencephalography (EEG) signals were studied and analyzed, with a view being able to detect epileptic seizures more easily. The power spectrum and spectrogram were determined by using fast fourier transform (FFT) and the scalogram was found by performing continuous wavelet transform (CWT) on the testing EEG signal. In addition, two schemes, i.e. method 1 and method 2, were implemented for detecting epileptic seizures and the applicability of the two methods to electrocardiogram (ECG) signals were tested. A third method for anomaly detection in ECG signals was tested. / En signifikant del av population påverkas idag av neurala sjukdomar som epilepsi. I denna studie studerades och analyserades egenskaper inom frekvensdomänen av elektroencefalografi (EEG), med sikte på att lättare kunna upptäcka epileptiska anfall. Effektspektrumet och spektrogramet bestämdes med hjälp av en snabb fouriertransform och skalogrammet hittades genom att genomföra en kontinuerlig wavelet transform (CWT) på testsignalen från EEGsignalen. I addition till detta skapades två system, metod 1 och metod 2, som implementerades för att upptäcka epileptiska anfall. Användbarheten av dessa två metoder inom elektrokardiogramsignaler (ECG) testades. En tredje metod för anomalidetektering i ECGsignaler testades.
447

Detecting Anomalous Behavior in Radar Data

Rook, Jayson Carr 01 June 2021 (has links)
No description available.
448

Anomaly detection with machine learning methods at Forsmark

Sjögren, Simon January 2023 (has links)
Nuclear power plants are inherently complex systems. While the technology has been used to generate electrical power for many decades, process monitoring continuously evolves. There is always room for improvement in terms of maximizing the availability by reducing the risks of problems and errors. In this context, automated monitoring systems have become important tools – not least with the rapid progress being made in the field of data analytics thanks to ever increasing amounts of processing power. There are many different types of models that can be utilized for identifying anomalies. Some rely on physical properties and theoretical relations, while others rely more on the patterns of historical data. In this thesis, a data-driven approach using a hierarchical autoencoder framework has been developed for the purposes of anomaly detection at the Swedish nuclear power plant Forsmark. The model is first trained to recognize normal operating conditions. The trained model then creates reference values and calculates the deviations in relation to real data in order to identify any issues. This proof-of-concept has been evaluated and benchmarked against a currently used hybrid model with more physical modeling properties in order to identify benefits and drawbacks. Generally speaking, the created model has performed in line with expectations. The currently used tool is more flexible in its understanding of different plant states and is likely better at determining root causes thanks to its physical modeling properties. However, the created autoencoder framework does bring other advantages. For instance, it allows for a higher time resolution thanks to its relatively low calculation intensity. Additionally, thanks to its purely data-driven characteristics, it offers great opportunities for future reconfiguration and adaptation with different signal selections.
449

IOT BASED LOW-COST PRECISION INDOOR FARMING

Madhu Lekha Guntaka (11211111) 30 July 2021 (has links)
<p>There is a growing demand for indoor farm management systems that can track plant growth, allow automatic control and aid in real-time decision making. Internet of Thing (IoT)-based solutions are being applied to meet these needs and numerous researchers have created prototypes for meeting specific needs using sensors, algorithms, and automations. However, limited studies are available that report on comprehensive large-scale experiments to test various aspects related to availability, scalability and reliability of sensors and actuators used in low-cost indoor farms. The purpose of this study was to develop a low-cost, IoT devices driven indoor farm as a testbed for growing microgreens and other experimental crops. The testbed was designed using off-the-shelf sensors and actuators for conducting research experiments, addressing identified challenges, and utilizing remotely acquired data for developing an intelligent farm management system. The sensors were used for collecting and monitoring electrical conductivity (EC), pH and dissolved oxygen (DO) levels of the nutrient solution, light intensity, environmental variables, and imagery data. The control of light emitting diodes (LEDs), irrigation pumps, and camera modules was carried out using commercially available components. All the sensors and actuators were remotely monitored, controlled, and coordinated using a cloud-based dashboard, Raspberry Pis, and Arduino microcontrollers. To implement a reliable, real-time control of actuators, edge computing was used as it helped in minimizing latency and identifying anomalies.</p> <p>Decision making about overall system performance and harvesting schedule was accomplished by providing alerts on anomalies in the sensors and actuators and through installation of cameras to predict yield of microgreens, respectively. A split-plot statistical design was used to evaluate the effect of lighting, nutrition solution concentration, seed density, and day of harvest on the growth of microgreens. This study complements and expands past efforts by other researchers on building a low cost IoT-based indoor farm. While the experience with the testbed demonstrates its real-world potential of conducting experimental research, some major lessons were learnt along the way that could be used for future enhancements.</p>
450

UHF-SAR and LIDAR Complementary Sensor Fusion for Unexploded Buried Munitions Detection

Depoy, Randy S., Jr. January 2012 (has links)
No description available.

Page generated in 0.1822 seconds