• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 41
  • 38
  • 30
  • 18
  • 11
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 451
  • 101
  • 98
  • 87
  • 77
  • 73
  • 65
  • 59
  • 53
  • 51
  • 49
  • 48
  • 48
  • 47
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of a Low Current LaB6 Heaterless Hollow Cathode with Krypton Propellant

Jain, Prachi Lalit 25 June 2020 (has links)
A first-generation LaB6 heaterless hollow cathode with a flat-plate anode is experimentally investigated. The cathode is characterized using krypton as propellant at varying flow rates, discharge currents and cathode-anode distances. Voltage probes, used to make direct voltage measurements in the ignition circuit, are the only diagnostic tool used experimentally. A plasma model is used to infer plasma parameters in the cathode emitter region. The cathode characterization results are consistent with those obtained during previous investigations of 1 A-class LaB6 hollow cathode with krypton. A peak-to-peak anode voltage criterion is used to identify the discharge modes and the occurrence of mode transition. Fourier analysis of the keeper and anode voltage waveforms carried out to study the discharge mode behavior reveals resonant frequencies ranging from 40 to 150 kHz. Lastly, post-test visual observations of the cathode components show signs of emitter poisoning and keeper erosion. / Master of Science / Recent years have seen rapid growth in the development of both stand-alone satellites and satellite constellations. A critical component of these satellites is the on-board propulsion system, which is responsible for controlling their orientation with respect to the object of interest and keeping the spacecraft in the assigned orbit. Generally, electric propulsion systems are used for this purpose. These types of propulsion systems use electrical power to change the velocity of satellite, providing a small thrust for a long duration of time as compared to chemical propulsion systems. Certain types of electric thrusters utilize a hollow cathode device as an electron source to start-off and support the thruster operation. In this research, a non-conventional hollow cathode for low power applications is developed and tested. The main characteristic of the developed cathode is the heaterless configuration, which eliminates the heater module used in conventional cathodes to enable the cathode to reach its operational temperature. The absence of a heater reduces the complexity of the cathode and the electrical power system. The cathode utilizes an electron emitter material which is insensitive to impurities and air exposure. Additionally, unlike typical electric thrusters which use xenon as the fuel, this cathode uses krypton which is similar to xenon but is less expensive. The presented work includes an overview of electric propulsion and the hollow cathode operation, followed by a detailed discussion of the heaterless hollow cathode design, the experimental setup and the test results. Several noteworthy findings regarding cathode operation are included as well. This research shows that the non-conventional heaterless hollow cathode and its operation with krypton have the potential to improve the overall thruster performance by reducing the weight and the cost, thus contributing to an integral aspect of satellite on-board propulsion.
52

Modification of Carbon Felt for Contruction of Air-Breathing Cathode and Its Application in Microbial Fuel Cell / Construction d'une biopile microbienne à un compartiment avec une cathode à air

Kosimaningrum, Widya Ernayati 13 November 2018 (has links)
La pile à combustible microbienne, MFC, est un bioengine qui associe respectivement le principe biochimique et le principe électrochimique pour extraire les électrons stockés dans la matière organique et les transformer en électricité. Dans un MFC, des microbes électroactifs vivants, avec son système enzymatique complet, sont utilisés pour biocatalyser l'oxydation du combustible organique; une anode est introduite artificiellement pour détourner les électrons, ce qui a eu pour résultat le système respiratoire bactérien; et à l'opposé, une cathode entraîne le flux d'électrons qui est ensuite commuté sur le courant électrique. Les microbes électroactifs se répandent dans de nombreuses sources telles que le sol, le compost, les boues, les eaux usées, etc. Les aliments pour animaux, les combustibles organiques et / ou d'autres nutriments peuvent également être abondamment présents dans leurs sources matricielles et dans de nombreuses autres sources inestimables, couramment disponibles dans la vie quotidienne. L'abondance bactérienne et le carburant organique illimité sont les deux raisons attrayantes pour le développement d'une source d'énergie durable telle que le MFC, qui attire également notre attention dans cette recherche. Ici, nous avons développé MFC, double chambre (DCMFC) et chambre unique (SCMFC), alimentés par compost de jardin comme source électroactive et acétate de carburant. Pour des raisons de durabilité et d’autres avantages, c’est-à-dire praticables et respectueux de l’environnement, nous nous sommes principalement concentrés sur le SCMFC avec un système de cathodes respiratoires. La problématique commune du SCMFC est la production d’énergie limitée due principalement à la cinétique lente de la réaction de réduction de l’oxygène (ORR) dans la partie cathodique. Par conséquent, il est important de mettre au point le matériau de la cathode respiratoire qui présente une activité de catalyse appropriée vis-à-vis de la perte de réponse optique pour surmonter cette limitation. Le feutre de carbone (CF) est le matériau de support choisi qui convient à la fabrication de cathodes à respiration aérienne. Alors que le platine (Pt) et l’oxyde de manganèse (MnOx), respectivement, en tant que classe de catalyseur suprême et de second rang, ont été développés sur CF grâce à une méthode simple d’électrodéposition. Les matériaux résultants, dénommés ACF@Pt et ACF@MnOx, ont été caractérisés de manière complète par des méthodes électrochimiques et physicochimiques afin de déterminer leurs performances électrocatalytiques, supportant ainsi l’application de cathodes respiratoires. En conséquence, nous avons développé deux principaux types de cathodes respiratoires, à savoir ACF@Pt et ACF@MnOx, appliquées avec succès dans le SCMFC alimenté par du compost de jardin avec une densité de puissance respective de 140 mW m-2 et 110 mW m-2. De plus, les deux matériaux développés révèlent également des applications prometteuses. Par exemple, ACF@Pt a été utilisé comme anode de MFC, à la fois dans DCMFC et SCMFC, et a amélioré la densité de puissance jusqu'à 300 mW m-2. Fait intéressant, il est également montré comme un excellent électrocatalyseur dans la réaction de dégagement d’hydrogène, HER. Alors que le matériau ACF@MnOx présente un électrocatalyseur prometteur dans un système de type électro-Fenton à la minéralisation d'un matériau biréfractif, c'est-à-dire l'un des constituants polluants dangereux des eaux usées. / Microbial fuel cell, MFC, is a bioengine that combine biochemical and electrochemical principle respectively to extract the stored electrons in organic material and to turn them into electricity. In an MFC, living electroactive microbes, with its whole enzymatic system, are employed to biocatalyze the oxidation of organic fuel; an anode is artificially introduced to divert the electrons, as resulted in the bacterial respiratory system; and oppositely a cathode drives the electron flow that further be switched to electrical power. Electroactive microbes spread out in numerous sources such as soil, compost, sludge, waste water, and so on. The feed, organic fuel and/or other nutrient, also can abundantly be present in their matrix sources and in many other priceless sources, which commonly available in daily life. Bacterial abundance and unlimited organic fuel are the two attractive reasons for the development of sustainable energy source as such as MFC, which is also drawn our attention in this research. Herein, we developed MFC, double chamber (DCMFC) and single chamber (SCMFC), which powered by garden compost as electroactive source and acetate fuel. For sustainability reason and other advantages i.e. practicability and eco-friendly, we mainly focused on SCMFC with air-breathing cathode system. The common problematic of the SCMFC is the limited power production that mainly due to the slow kinetic of oxygen reduction reaction (ORR) in the cathodic part. Therefore, it is important to developed the material of air-breathing cathode which has a proper catalysis activity toward ORR to overcome this limitation. Carbon felt (CF) is the selected support material that suitable for air-breathing cathode fabrication. While, platinum (Pt) and manganese oxide (MnOx) respectively, as supreme and runner-up catalyst’s class, has been grown on CF through a simple electrodeposition method. The resulting materials, named as ACF@Pt and ACF@MnOx, have been characterized comprehensively by electrochemical and physicochemical methods to determine their electrocatalytic performances, which support for air-breathing cathode application. Accordingly, we have developed two main types of air-breathing cathode, i.e. ACF@Pt and ACF@MnOx, which have been successfully applied in SCMFC powered by garden compost with generated power density respectively 140 mW m-2 and 110 mW m-2. Moreover, the both developed material also reveal some promising application. For instance, ACF@Pt has been applied as MFC’s anode, both in DCMFC and SCMFC, and has improved the power density up to 300 mW m-2. Interestingly, it is also shown as an excellent electrocatalyst in hydrogen evolution reaction, HER. While, the ACF@MnOx material shows a promising electrocatalyst in an electro-Fenton like system to mineralization of biorefractory material i.e. one of the hazardous pollutant constituent of wastewater.
53

Nouvelles architectures tridimensionnelles pour électrodes de piles à combustible à oxydes solides (SOFC Solid Oxide Fuel Cell) / New three-dimensional architectures for solid oxide fuel cell electrodes

Greiner, Yoan 20 December 2017 (has links)
Les piles à combustible sont des systèmes qui permettent de convertir directement de l'énergie chimique en énergie électrique. La structure physique d'une pile à combustible est composée d'une cathode et d'une anode poreuses séparées par un électrolyte dense. Les piles à combustible à oxydes solides (Solid Oxide Fuel Cell (SOFC))offrent une alternative intéressante pour la production d'énergie et une certaine polyvalence dans leur utilisation. Les recherches actuelles se focalisent sur l'abaissement de la température de fonctionnement de ce type de pile (500-700°C) pour augmenter leur durée de vie, diminuer les coûts de fabrication et les dégradations aux interfaces. Afin de compenser ces problèmes, la recherche tend vers des matériaux présentant de meilleures propriétés électrochimiques ou en modifiant la microstructure de la cathode pour améliorer le transfert de masse et le transfert de charge. La cathode est une couche très importante dans la pile SOFC car elle présente une résistance de la polarisation dont la réduction constitue un défi important à traiter. Dans une première partie de ce travail de thèse nous avons développé une méthode pour permettre d'améliorer les propriétés électrochimiques de cathodes de manganite de lanthane dopée au strontium (LSM). La seconde partie a été consacrée à l'élaboration et la caractérisation par spectroscopie d'impédance de demi-cellules symétriques de SOFC avec un matériau composite à base de LSM permettant d'améliorer les propriétés électrochimiques des électrodes à des températures comprises entre 600 °C - 700 °C. / Fuel cells are systems that convert chemical energy directly into electrical energy. The physical structure of a fuel cell is composed of a porous cathode and anode separated by a dense electrolyte. Solid Oxide Fuel Cells (SOFC) offer an alternative for power generation and versability in their use. Current research focuses on lowering the operating temperature of this type of fuel cell (500-700°C) to increase their life, reduce manufacturing costs and damageto the interfaces. In order to compensate these problems, research tends towards materials with better electrochemical properties or by modifying the microstructure of the cathode to improve mass transfer and charge transfer. The cathode is a very important layer in the SOFC stack because it has a polarization resistance whose reduction is a major challenge to deal with. In a first part of this thesis work we have developed a method to improve the electochemical properties of strontium doped lanthanum manganite (LSM) cathodes. The second part was devoted to the elaboration and caracterization by impedance spectroscopy of SOFC symmetric half-cells with a LSM-based composite material allowing to improve the electochemical properties of electrodes at temperatures between 600-700 °C.
54

Exploration of new sulfate-based cathode materials for lithium ion batteries / Exploration de nouveaux matériaux à base de sulfates pour des batteries lithium ion

Lander, Laura 04 November 2016 (has links)
Ces vingt dernières années, les batteries lithium-ion sont devenues dominantes parmi les technologies de stockage d’énergie électrique. Selon les applications, ces batteries (ou les matériaux qui la constituent) doivent présenter différentes spécificités: notamment une grande densité d’énergie, un bas coût, des contraintes de sécurité et de durabilité. Dans ce but, le développement de nouveaux matériaux d’électrode est indispensable. Nous nous sommes engagés, dans cette thèse, dans la synthèse des nouveaux composés polyanioniques à base de sulfates et fluorosulfates comme matériaux d’électrodes positives. Au cours de notre étude, nous avons synthétisé un nouveau polymorphe de KFeSO4F, de symétrie monoclinique, dont nous avons déterminé la structure en combinant la diffraction des rayons X et des neutrons sur poudre. Il est possible d’extraire électrochimiquement K+ de KFeSO4F et de réinsérer Li+ dans cette nouvelle matrice «FeSO4F» à un potentiel moyen de 3.7 V vs. Li+/Li0. Ensuite, nous nous sommes penchés vers des matériaux dépourvus de fluor et nous avons découvert une nouvelle phase Li2Fe(SO4)2 orthorhombique, qui présente des propriétés électrochimiques intéressantes avec un potentiel de 3.73 et 3.85 V vs. Li+/Li0 et une bonne cyclabilité. Nous avons également étudié le composé langbeinite K2Fe2(SO4)3 pour son aptitude à intercaler Li+ une fois le K+ extrait, avec cependant peu de succès. Néanmoins, en examinant d’autres phases langbeinites K2M2(SO4)3 avec M=métaux de transition 3d, nous avons découvert un nouveau composé K2Cu2(SO4)3, qui cristallise dans une structure différente de celle des langbeinites. Enfin, nous n’avons pas seulement étudié ces nouveaux matériaux pour leurs propriétés électrochimiques mais nous avons été également capables de révéler d’autres caractéristiques physiques intéressantes, notamment magnétiques. Les composés Li2Fe(SO4)2 orthorhombique et KFeSO4F monoclinique s’ordonnent antiferromagnétiquement à longue distance et leur structure magnétique autorise un couplage magnéto-électrique. / Lithium-ion batteries (LIBs) have become the dominating electrical energy storage technology in the last two decades. However, depending on their applications, LIBs need to fulfill several requirements such as high energy density, low-cost, safety and sustainability. This calls for the development of new electrode materials. Focusing on the cathode side, we embarked on the synthesis of novel sulfate- and fluorosulfate-based polyanionic compounds. During the course of our study, we discovered a monoclinic KFeSO4F polymorph, whose structure was determined via combined X-ray and neutron powder diffraction. We could electrochemically extract K+ and reinsert Li+ into this new polymorphic “FeSO4F” matrix at an average potential of 3.7 V vs. Li+/Li0. We then turned towards fluorine-free materials and synthesized a new orthorhombic Li2Fe(SO4)2 phase, which presents appealing electrochemical properties in terms of working potential (3.73 and 3.85 V vs. Li+/Li0) and cycling stability. In a next step, we tested langbeinite K2Fe2(SO4)3 for its aptitude to intercalate Li+ once K+ is extracted, with however little success. Nevertheless, exploring other langbeinite K2M2(SO4)3 phases (M=3d transition metal), we discovered a new K2Cu2(SO4)3 compound, which crystallizes in an orthorhombic structure distinct from the langbeinite one. Finally, we investigated these compounds not only for their electrochemistry, but we were also able to demonstrate other interesting physical properties, namely magnetic features. Orthorhombic Li2Fe(SO4)2 and monoclinic KFeSO4F both present a long-range antiferromagnetic spin ordering whose symmetry allows a magnetoelectric effect.
55

Les phosphates de structure olivine LiMPO4 (M=Fe, Mn) comme matériau actif d’électrode positive des accumulateurs Li-ion / The lithium metal phosphates LiMPO4 olivine structure (M = Fe, Mn) as the active material of the positive electrode of Li-ion

Perea, Alexis 21 October 2011 (has links)
Ce mémoire est consacré à la recherche de matériaux d'électrode positive pour batteries Li-ion et plus particulièrement aux phases de type olivine : LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 et LiMnyCo1-yPO4 obtenues par voie céramique. Une étude des propriétés physico-chimiques et structurales de ces composés a été réalisée par les techniques classiques de la Chimie du Solide et de la Science des Matériaux : spectrométrie Mössbauer de 57Fe, microscopie MEB et diffraction des rayons X. L'objectif de cette étude est d'identifier et de comprendre les mécanismes de réaction lors du cyclage de la batterie qui peuvent améliorer ou limiter les performances de la batterie.Cette étude a permis de montrer la complémentarité de la spectrométrie Mössbauer et de la diffraction des rayons X pour l'analyse des mécanismes d'oxydo-réduction mis en jeu dans les réactions électrochimiques. A partir du mécanisme biphasé bien connu de LiFePO4, des mécanismes électrochimiques en trois étapes et les phases formées lors du cyclage ont été identifiés pour les phases substituées au manganèse. L'aptitude de ces composés à fonctionner comme matériaux d'électrode positive de batteries Li-Ion de puissance a été démontrée par des cyclages à longue durée à différentes températures et vitesses de cyclage. / This thesis is devoted to finding positive electrode materials for Li-ion batteries and more particularlycompounds of olivine type: LiFePO4, LiFe1-yMnyPO4, LiFe1-yCoyPO4 and LiMnyCo1-yPO4. An in-depth study of their physicochemical and structural properties was done combining Solid State Chemistry and Material Sciences techniques: Mössbauer spectrometry of 57Fe, microscopy SEM and X-ray diffraction. The aim of this study is to identify and understand the electrochemical mechanism during the cycling of the battery that can enhance or limit the battery performance. This study has shown the complementarity of Mössbauer spectrometry and X-ray diffraction to analyze the redox mechanisms involved into the electrochemical reactions. From the well-known two-phase mechanism of LiFePO4, electrochemical mechanisms in three steps and phases formed during cycling have been identified for phase substituted manganese. The ability of these compounds to be used as positive electrode materials for powerful Li-Ion batteries was demonstrated by long-term cycling at different temperatures and rates of cycling.
56

Implementation of a ¼ Inch Hollow Cathode Into a Miniature Xenon Ion Thruster (MiXI)

Knapp, David Wayne 01 June 2012 (has links) (PDF)
Over the last decade, miniature ion thruster development has remained an active area of research do to its low power, low thrust, and high efficiency, however, due to several technical issues; a flight level miniature ion thruster has proved elusive. This thesis covers the design, fabrication, assembly, and test of an altered version of the Miniature Xenon Ion thruster (MiXI), originally developed by lead engineer Dr. Richard Wirz, at the California Institute of Technology (Caltech). In collaboration with Dr. Wirz, MiXI-CP-V3 was developed at Cal Poly San Luis Obispo with the goal of implementing of a ¼ inch hollow cathode and 3mmx3mm plasma confinement magnets in order to improve the plasma confinement characteristics, reliability, and performance of the MiXI design. Operational testing revealed a mass utilization efficiency of 35-75% and a discharge loss of 550-1200 eV/ion over plasma discharge currents of 0.5-1.5A and propellant flow rates of 0.8-1.3 SCCM. Testing revealed that the MiXI thruster can be operated with a hollow cathode and observations and data gained from this study have led to a greater understanding of the operational parameters of the MiXI thruster, and will contribute to the development and advancement of the MiXI baseline design, with the goal of creating an efficient and reliable flight level miniature ion thruster.
57

Development of High Performance Air-Cathodes for Solid State Lithium-Air Cells

Garlapati, Vasisht 13 April 2010 (has links)
No description available.
58

Study of Scandate Cathode Surface Materials

Wan, Congshang 25 August 2015 (has links)
No description available.
59

Nanoscale Characterization of Aged Li-Ion Battery Cathodes

Ramdon, Sanjay Kiran January 2013 (has links)
No description available.
60

Design and synthesis of Ni-rich and low/no-Co layered oxide cathodes for Li-ion batteries

Yang, Zhijie 23 February 2023 (has links)
Li-ion batteries (LIBs) have achieved remarkable success in electric vehicles (EVs), consumer electronics, grid energy storage, and other applications thanks to a wide range of electrode materials that meet the performance requirements of different application scenarios. Cathodes are an essential component of LIBs, which governs the performance of commercial LIBs. Layered transition metal oxide, i.e., LiNixCoyMn1-x-yO2 (NMC), is one family of cathodes that are widely applied in the prevailing commercial LIBs. With increasing demand for high energy density, the development of layered oxide cathodes is towards high Ni content because Ni redox couples majorly contribute to the battery capacity. Meanwhile, the battery community has been making tremendous efforts to eliminate Co in layered cathodes due to its high cost, high toxicity, and child labor issues during Co mining. However, these Ni-rich Co-free cathodes usually suffer from low electrochemical and structural stability. Several strategies are adopted to enhance the stability of Ni-rich Co-free cathodes, such as doping, coating, and synthesizing single crystal particles. However, the design principles and synthesis mechanisms of these approaches have not been fully understood. Herein, we design and synthesize stable Ni-rich and low/no-Co layered oxide cathodes by manipulating the chemical and structural properties of cathode particles. Our studies reveal the cathode formation mechanisms and shed light on the cathode design through complementary synchrotron microscopic and spectroscopic characterization methods. In Chapter 1, the motivation for LIB research is introduced from the perspective of its indispensable role in achieving carbon neutrality. We then comprehensively introduce the status of LIBs at present, including assessing their sustainability, worldwide supply chain and manufacturing, and cathode materials. Subsequently, we focus on the Co-free layered oxide cathodes and discuss their structure, limitations, and strategies to address the challenges. Finally, we discuss single crystal Ni-rich layered oxide cathodes and the challenges and strategies associated with their synthesis. In Chapter 2, we investigate the dopant redistribution, phase propagation, and local chemical changes of layered oxides at multiple length scales using a multielement-doped LiNi0.96Mg0.02Ti0.02O2 (Mg/Ti-LNO) as a model platform. We observed that dopants Mg and Ti diffuse from the surface to the bulk of cathode particles below 300 °C long before the formation of any layered phase, using a range of synchrotron spectroscopic and imaging diagnostic tools. After calcination, Ti is still enriched at the cathode particle surface, while Mg has a relatively uniform distribution throughout cathode particles. Our findings provide experimental guidance for manipulating the dopant distribution upon cathode synthesis. In Chapter 3, we synthesized Mn(OH)2-coated single crystal LiNiO2 (LNO) and used it as the platform to monitor the Mn redistribution and the structural and chemical evolution of the LNO cathode. We use in situ transmission X-ray microscopy (TXM) to track the Mn tomography inside the LNO particle and Ni oxidation state evolution at various temperatures below 700 °C. We further reveal chemical and structural changes induced by different extents of Mn diffusion at ensemble-averaged scale, which validates the results at the single particle scale. The ion diffusion behavior in the cathode is highly temperature dependent. Our study provides guidance for ion distribution manipulation during cathode modification. In Chapter 4, we successfully fabricated a surface passivation layer for NMC particles via a feasible quenching approach. A combination of bulk and surface structural characterization methods show the correlation of surface layer with bulk chemistry including valence state and charge distribution. Our design enables high interfacial stability and homogeneous charge distribution, impelling superior electrochemical performance of NMC cathode materials. This study provides insights into the cathode surface layer design for modifying other high-capacity cathodes in LIBs. In Chapter 5, we use statistical tools to identify the significance of multiple synthetic parameters in the molten salt synthesis of single crystal Ni-rich NMC cathodes. We also create a prediction model to forecast the performance of synthesized single crystal Ni-rich NMC cathodes from the input of synthetic parameters with relatively high prediction accuracy. Guided by the models, we synthesize single crystal LiNi0.9Co0.05Mn0.05O2 (SC-N90) with different particle sizes. We find large single crystals show worse capacity and cycle life than small single crystals especially at high current rates due to slower Li kinetics. However, large single crystal has higher thermal stability potentially because of smaller specific surface area. The findings of particle size effect on the performance provide insights into size engineering while developing next-generation single crystal Ni-rich NMC cathodes. The statistical and prediction models developed in this study can guide the molten salt synthesis of Ni rich cathodes and simplify the optimization process of synthetic parameters. Chapter 6 summarizes our efforts on the novel design and fundamental understanding of the state-of-the-art cathodes. We also provide our future perspectives for the development of LIBs. / Doctor of Philosophy / Lithium-ion batteries (LIBs) have been studied for decades and are widely applied in electronics and vehicles because of their high energy density and long lifetime. With the increasing demand for higher energy density, particularly in electric vehicles, the development of Ni-based layered oxide cathode materials has been focused on increasing the Ni content. Meanwhile, decreasing or eliminating Co has become a consensus due to its high cost, toxicity, and human rights issues during mining. Enhancing the stability of these Ni-rich and low/no-Co layered oxide cathodes is challenging yet crucial to their practical applications. Herein, we design and synthesize multiple Ni-rich and low/no-Co layered cathodes through ion distribution engineering and structure modification at various length scales. We also investigate the dopant redistribution, phase propagation, and local chemical changes during layered oxides cathode formation through a combination of complementary characterization methods at different length scales. In addition, we provide guidance for synthesis optimization by statistical correlations and performance prediction models with the input of synthetic conditions. Overall, this dissertation provides insights into the design and synthesis principles of Ni-rich low/no-Co layered oxide cathode, which can facilitate the transition to a sustainable future with next-generation LIBs.

Page generated in 0.0358 seconds