• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 41
  • 38
  • 30
  • 18
  • 11
  • 8
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 451
  • 101
  • 98
  • 87
  • 77
  • 73
  • 65
  • 59
  • 53
  • 51
  • 49
  • 48
  • 48
  • 47
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Modélisation d'une cathode creuse pour propulseur à plasma / Modelling of a hollow cathode for plasma thrusters

Sary, Gaétan 28 September 2016 (has links)
La cathode creuse est un élément clef des propulseurs à plasma. Dans un propulseur à plasma, un gaz propulsif est ionisé dans un canal de décharge puis accéléré hors de celui-ci afin de créer la poussée. Dans le propulseur de Hall en particulier, l'ionisation du gaz est provoquée par l'injection dans le canal de décharge d'un intense courant électronique (de quelques ampères à plus d'une centaine d'ampères). L'élément chargé de fournir le courant électronique de la décharge, la cathode creuse, est crucial dans le fonctionnement du propulseur. Or, celle-ci est souvent idéalisée dans les modèles de propulseur et n'est que rarement étudiée pour sa physique propre. Pourtant, le développement de propulseurs de Hall de haute puissance, destinés à terme à équiper l'ensemble des missions spatiales, requiert la mise au point de cathodes capable de délivrer un fort courant (jusqu'à plus de 100 A) sur des durées de l'ordre de la dizaine de milliers d'heures. Or, la mise au point de nouvelles cathodes s'est révélée difficile en raison de l'absence de modèle susceptible de prédire a priori les performances d'une cathode en fonction de sa conception. On se propose ici de mettre en place un modèle prédictif de cathode creuse capable de retranscrire la physique du fonctionnement de la cathode. L'objectif in fine est bien sûr d'utiliser ce modèle afin de faire le lien entre la conception de la cathode et son fonctionnement dans le but de guider le développement de futures cathodes. On présentera tout d'abord brièvement le contexte d'application des cathodes creuses, et on donnera un rapide aperçu du principe de fonctionnement global de la cathode. Ensuite, après avoir effectué un tour d'horizon des différents modèles numériques de cathode creuse préexistants dans la littérature, on détaillera le modèle de la cathode développé ici, qui incorpore une description fluide du plasma, ainsi que des transferts thermiques aux parois, qui conditionnent en grande partie le bon fonctionnement de la cathode. Un soin particulier sera apporté à la validation des résultats de simulation vis-à-vis des mesures expérimentales disponibles dans la littérature, ce qui nous permettra de perfectionner certains points du modèle afin de mieux traduire la réalité physique. En particulier, une modélisation spécifique de la région de transition entre la décharge interne de la cathode et la plume du propulseur sera réalisée. Ce modèle permettra de mettre en évidence certains phénomènes d'instabilité du plasma spécifiques de cette décharge, qui ont été jusqu'ici observés expérimentalement mais jamais pleinement intégrés aux modèles de cathode creuse. A l'aide du modèle validé, on procèdera à l'analyse physique de l'ensemble des phénomènes qui gouvernent le fonctionnement d'une cathode particulière, la cathode NSTAR développée par la NASA au Jet Propulsion Laboratory. Ensuite, on s'appuiera sur le modèle numérique pour comprendre l'impact sur le fonctionnement de la cathode des choix de conception au travers d'une étude paramétrique autour de la cathode NSTAR. Les tendances dégagées nous permettront de formuler des recommandations quant au développement de cathodes de haute puissance. Enfin, dans le but d'illustrer la versatilité du modèle développé, le comportement d'une cathode creuse employant une géométrie alternative à la cathode NSTAR sera également présenté. / A hollow cathode is a critical component of plasma thrusters. In a plasma thruster, a propellant gas is ionized in a discharge chamber and accelerated out of it so as to generate thrust. In Hall thrusters in particular, the ionization of the gas is caused by an intense electron current (from a few to hundred amps) which flows through the discharge chamber. The hollow cathode is the device which is responsible for providing the discharge current. This key element is often idealized in thruster numerical models and its physical behavior is rarely studied for its own sake. Yet, developing high power Hall thrusters, designed to propel in the long run every type of space mission, requires new hollow cathodes able to supply an intense electron current (over 100 A) over a duration on the order of ten thousand hours. So far, designing new cathodes proved difficult because of the lack of model capable of predicting the performance of a cathode based on its design. In this work, we build up a predictive model of a hollow cathode capable of simulating the physics relevant to the operation of the cathode. In the end, we aim at using this model to associate design characteristics of the cathode to key aspects of the cathode performance during operation. Our goal with this model is to guide the development of future high power hollow cathodes. We will first briefly describe the range of application of hollow cathodes related to space propulsion. Then we will give a brief account of the working principles of the cathode and we will set the numerical models available in the literature prior to this one out. The numerical model developed in this work will then be described. It includes a fluid treatment of the plasma as well as an account of the heat fluxes to the walls which largely control the performance of the cathode. Simulation results will be thoroughly compared to experimental measurements available in the literature and specific aspects of the model will be refined to match up simulation results with the physical reality. For instance, a model that specifically represents the transition region between the internal plasma of the cathode and the plume of the cathode will be described. This model will enable us to highlight plasma instability phenomena which were so far observed experimentally, yet never properly included in hollow cathode models. Using the model just developed, we will analyze the physics of a particular hollow cathode which has been developed by NASA at the Jet Propulsion Laboratory, the NSTAR hollow cathode. Then, thanks to the numerical model, we will be able to carry out a parametric study revolving around the design of the NSTAR cathode. This will allow us to bring out the influence of the design on the cathode performance and we will eventually express recommendations regarding the design of future high power cathodes. To conclude, the versatility of the numerical model built up here will also be displayed through simulations of the behavior of a hollow cathode based on an alternate geometry.
62

Étude des mécanismes de formation et du comportement des dépôts au pourtour de cellules d’électrolyse d’aluminium

Allard, François January 2014 (has links)
Le Canada est un joueur majeur dans l’industrie de l’aluminium. Pour demeurer compétitif mondialement, le coût de production de l’aluminium doit constamment être réduit. Les cellules d’électrolyse requièrent une grande quantité d’énergie (~13 kWh/kg) pour produire l’aluminium. De plus, l’efficacité du procédé Hall-Héroult est diminuée par la présence de dépôts à l’interface entre l’aluminium et le bloc cathodique. Ces dépôts causent une restriction pour le passage du courant engendrant une augmentation de la perte de potentiel. Les dépôts à la surface du bloc cathodique se divisent en différentes catégories. Il y a le pied de talus qui est situé sous le talus et sur le bloc cathodique. La partie du pied de talus près de la paroi de la cellule d’électrolyse possède une composition chimique similaire au talus. La partie à l’extrémité du pied de talus possède un ratio de cryolite plus élevé que le talus et elle est davantage sursaturée en alumine. L’extrémité du pied de talus peut atteindre jusqu’à 85 % d’Al[indice inférieur 2]O[indice inférieur 3]. Le pied de talus se forme par les pertes de chaleur situées au niveau de la paroi et au fond de la cellule. Il prend de l’expansion lorsque la température locale est inférieure à la température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] (944 °C à un ratio de cryolite de 2,5). Le ratio de cryolite de l’extrémité du pied de talus augmente puisqu’il y a migration des cations Na[indice supérieur +] vers la cathode. La boue est composée d’un mélange d’Al[indice inférieur 2]O[indice inférieur 3] solide en suspension dans le bain électrolytique liquide. Elle est située, en général, au centre de la cellule d’électrolyse et sur le bloc cathodique. De plus, un film de bain sursaturé en alumine peut se retrouver entre le pied de talus et la boue au centre. Le ratio de cryolite de la boue se situe entre 2,2 et 2,5 et la concentration d’Al[indice inférieur 2]O[indice inférieur 3] varie entre 20 % et 50 %. La température de solidification de la phase Na[indice inférieur 3]AlF[indice inférieur 6] est fortement influencée par l’excès d’AlF[indice inférieur 3] et par la concentration en CaF[indice inférieur 2]. De plus, il y a présence d’une fraction liquide dans les dépôts dès 730 °C compte tenu de la présence de Na[indice inférieur 5]Al[indice inférieur 3]F[indice inférieur 14], Na[indice inférieur 2]Ca[indice inférieur 3]Al[indice inférieur 2]F[indice inférieur 14] et NaCaAlF[indice inférieur 6]. La fraction liquide augmente lorsque le ratio de cryolite diminue. Il y a évaporation de bain acide à partir d’environ 730 °C. Les dépôts dans la cellule d’électrolyse sont donc à l’état solide-liquide dès que la température atteint environ 730 °C.
63

Autoregenerative Laccase Cathodes: Fungi at the Food, Water, and Energy Nexus

Evans, John Parker January 2016 (has links)
Today’s most pressing problems would greatly benefit from an integrated production method for food, water, and energy. Biological fuel cells can offer such a production method, but current designs cannot be scaled to meet global demand. The ability of five different fungal strains to secrete laccase was evaluated under optimized culture conditions using three inducers. A specialized electrode was developed to increase the loading of laccase on the cathode. Trametes versicolor was then immobilized at the modified cathode and shown to secrete electrochemically active laccase. This hybrid design combines the power density of an enzymatic catalyst with the robustness of a microbial catalyst by facilitating biological renewal of the enzymatic catalyst laccase.
64

The fabrication and evaluation of diamond cold cathodes for field emitter display applications

Fox, Neil Anthony January 1998 (has links)
No description available.
65

Platinum based catalysts for the cathode of proton exchange membrane fuel cells

Ndzuzo, Linathi January 2018 (has links)
>Magister Scientiae - MSc / Oxygen reduction reaction (ORR) is carried out in the cathode of the proton exchange membrane fuel cell (PEMFC) and it is known for its sluggish kinetics and the existence of two-pathway mechanism, related with the production of water and hydrogen peroxide. Nowadays, the design of novel cathode catalysts that are able to generate both high oxygen reduction currents and water as main product is a challenge since it causes an enhancement in the performance of PEMFC. Generally, these catalysts are composed of platinum nanoparticles, bearing in mind its high activity towards the ORR. However, the use of platinum means an increase in the total cost of PEMFCs due to its scarcity and high cost. This topic has been the motivation for a wide research in the field of PEMFCs during the last several years, being the main goal to design efficient and low cost catalysts for the cathode of PEMFCs. In this Master thesis project, platinum-palladium (Pt-Pd) catalysts supported on carbon black (CB), carbon nanofibers (CNF) and carbon xerogels (CX) were synthesised using methanol (MeOH), formaldehyde (FMY), n-propanol (nPrOH), ethanol (EtOH) and ascorbic acid (AA). The as-prepared materials were physically characterised by energy dispersive X-ray (EDS), X-ray diffraction (XRD) and transmission electronic microscopy (TEM), in order to determine its composition and morphological characteristics. The catalytic activity towards ORR was assessed by means of electrochemical techniques as rotating disc electrode (RDE) and cyclic voltammetry (CV).
66

The Material Design of Stable Cathodes in Li-Oxygen Batteries and Beyond

Yao, Xiahui January 2017 (has links)
Thesis advisor: Dunwei Wang / Non-aqueous Li-O2 batteries promise the highest theoretical specific energy among all rechargeable batteries. It is the only candidate that can be comparable with the internal combustion engine in terms of gravimetric energy density. This makes Li-O2 batteries preferable in the application of electric vehicles or drones. However, the materialization of this technology has been hindered by the poor cycling performance. The major reason for the degradation of the battery at the current research stage has been identified as the decomposition of the electrolyte and the cathode. These parasitic reactions will lower the yield of the desired product and induce huge overpotential during the recharge process. By carefully examining the degradation mechanism, we have identified the reactive oxygen species as the culprit that will corrode the cathode and attack the organic solvents. While parallel efforts have been devoted to reduce the reactivity of these species toward electrolyte, the main focus of this thesis is to identify suitable material platforms that can provide optimum performance and stability as cathodes. A bio-inspired wood-derived N-doped carbon is first introduced to demonstrate the benefit of hierarchical pore structures for Li-O2 cathodes. But the instability of the carbon cathode itself limits the lifetime of the battery. To improve the stability of carbon, we further introduce a catalytic active surface coating of FeOx on a three dimensionally ordered mesoporous carbon. The isolation of carbon from the reactive intermediates greatly improves the stability of the cathode. Yet the imperfections of the protection layer on carbon calls for a stable substrate that can replace carbon. TiSi2 is explored as the candidate. With the decoration of Pd catalysts, the Pd/TiSi2 cathode can provide extraordinary stability toward reactive oxygen species. But this composite cathode suffers from the detachment of the Pd catalyst. A Co3O4 surface layer is further introduced to enhance the adhesion of the catalyst, which doubles the lifetime of the cathode. To achieve a fully stable cathode, Ru catalyst with stronger adhesion on TiSi2 directly is explored and identified to be robust in the operating conditions of Li-O2 batteries. The expedition for stable cathodes in Li-O2 batteries is expected to provide a clean material platform. This platform can simplify the study in evaluating the effectiveness of catalysts, the reaction mechanism at the cathode and the stability of the electrolyte. Toward the end of this thesis, an exploration is made to enable rechargeable Mg metal battery with a conversion Br2 cathode. This new system can avoid the dendritic growth of Li metal by the adoption of Mg as the anode and can promise better cathode kinetics by forming a soluble discharge product. / Thesis (PhD) — Boston College, 2017. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
67

Construção de um detector tipo catodo quente para detecção de átomos neutros e aplicação no estudo de deflexão de feixes atômicos por luz / Construction of a hot-cathode like detector for detection of neutral atoms and its application in the study of the deflection of atomic beams by light

Oliveira, Henrique Barcellos de 25 January 1991 (has links)
Um detector de catodo quente é construído. As características de operação foram medidas e estabelecido o ponto ótimo de operação na detecção de átomos de sódio. Uma aplicação do detector desenvolvido foi feita com experimentos de deflexão de feixe atômico por luz. Os casos para deflexão por onda caminhante e onda estacionária foram investigados. A dependência com a dessintonia entre a freqüência do laser &#969&#8747 e a freqüência da transição 3S1/2 (F=2, m=2) &#8594 3P3/2 (F=3, m=3) do átomo de sódio foi analisada para todos os casos. / A hot wire detector has been constructed. The operational characteristics were measured and the optimum operational point was established in sodium atoms detection experiment. An application of the developed detector was made with atomic beams deflections by light. The cases for running wave and standing wave were also investigated. The detuning dependence between the laser frequency &#969&#8747 and the transition frequency 3S1/2 (F=2, m=2) &#8594 3P3/2 (F=3, m=3) of the sodium atom was analyzed for all cases.
68

Characterization of the Near-Plume Region of a Low-Current Hollow Cathode

Asselin, Daniel Joseph 28 April 2011 (has links)
Electric propulsion for spacecraft has become increasingly commonplace in recent decades as designers take advantage of the significant propellant savings it can provide over traditional chemical propulsion. As electric propulsion systems are designed for very low thrust, the operational time required over the course of an entire mission is often quite long. The two most common types of electric thrusters both use hollow cathodes as electron emitters in the process of ionizing the propellant gas. These cathodes are one of the main life-limiting components of both ion and Hall thrusters designed to operate for tens of thousands of hours. Failure often occurs as a result of erosion by sputtering from high-energy ions generated in the plasma. The mechanism that is responsible for creating these high-energy ions is not well understood, and significant efforts have gone into characterizing the plasma produced by hollow cathodes. This work uses both a Langmuir probe and an emissive probe to characterize the variation of the plasma potential and density, the electron temperature, and the electron energy distribution function in the near plume region of a hollow cathode. The cathode used in this experiment is typical of one used in a 200-W class Hall thruster. Measurements were made to determine the variation of these parameters with radial position from the cathode orifice. Changes associated with varying the propellant and flow rate were also investigated. Results obtained from the cathode while running on both argon and xenon are shown. Two different methods for calculating the plasma density and electron temperature were used and are compared. The density and temperature were not strongly affected by reductions in the propellant flow rate. The electron energy distribution functions showed distinct shifts toward higher energies when the cathode was operated at lower flow rates. The plasma potential also displayed an abrupt change in magnitude near the cathode centerline. Significant increases in the magnitude of plasma potential oscillations at lower propellant flow rates were observed. Ions formed at the highest instantaneous plasma potentials may be responsible for the life-limiting erosion that is observed during long-duration operation of hollow cathodes.
69

Thermodynamic stability of perovskite and lanthanum nickelate-type cathode materials for solid oxide fuel cells

Cetin, Deniz 05 November 2016 (has links)
The need for cleaner and more efficient alternative energy sources is becoming urgent as concerns mount about climate change wrought by greenhouse gas emissions. Solid oxide fuel cells (SOFCs) are one of the most efficient options if the goal is to reduce emissions while still operating on fossil energy resources. One of the foremost problems in SOFCs that causes efficiency loss is the polarization resistance associated with the oxygen reduction reaction(ORR) at the cathodes. Hence, improving the cathode design will greatly enhance the overall performance of SOFCs. Lanthanum nickelate, La2NiO4+δ (LNO), is a mixed ionic and electronic conductor that has competitive surface oxygen exchange and transport properties and excellent electrical conductivity compared to perovskite-type oxides. This makes it an excellent candidate for solid oxide fuel cell (SOFC) applications. It has been previously shown that composites of LNO with Sm0.2Ce0.8O2-δ (SDC20) as cathode materials lead to higher performance than standalone LNO. However, in contact with lanthanide-doped ceria, LNO decomposes resulting in free NiO and ceria with higher lanthanide dopant concentration. In this study, the aforementioned instability of LNO has been addressed by compositional tailoring of LNO: lanthanide doped ceria (LnxCe1-xO2,LnDC)composite. By increasing the lanthanide dopant concentration in the ceria phase close to its solubility limit, the LNO phase has been stabilized in the LNO:LnDC composites. Electrical conductivity of the composites as a function of LNO volume fraction and temperature has been measured, and analyzed using a resistive network model which allows the identification of a percolation threshold for the LNO phase. The thermomechanical compatibility of these composites has been investigated with SOFC systems through measurement of the coefficients of thermal expansion. LNO:LDC40 composites containing LNO lower than 50 vol%and higher than 40 vol% were identified as being suitable to incorporate into full button cell configuration from the standpoint of thermomechanical stability and adequate electrical conductivity. Proof-of-concept performance comparison for SOFC button cells manufactured using LNO: La0.4Ce0.6O2-δ composite to the conventional composite cathode materials has also been provided. This thermodynamics-based phase stabilization strategy can be applied to a wider range of materials in the same crystallographic family, thus providing the SOFC community with alternate material options for high performance devices.
70

Electrochemically enhanced ferric lithium manganese phosphate / multi-walled carbon nanotube, as a possible composite cathode material for lithium ion battery

Sifuba, Sabelo January 2019 (has links)
>Magister Scientiae - MSc / Lithium iron manganese phosphate (LiFe0.5Mn0.5PO4), is a promising, low cost and high energy density (700 Wh/kg) cathode material with high theoretical capacity and high operating voltage of 4.1 V vs. Li/Li+, which falls within the electrochemical stability window of conventional electrolyte solutions. However, a key problem prohibiting it from large scale commercialization is its severe capacity fading during cycling. The improvement of its electrochemical cycling stability is greatly attributed to the suppression of Jahn-Teller distortion at the surface of the LiFe0.5Mn0.5PO4 particles. Nanostructured materials offered advantages of a large surface to volume ratio, efficient electron conducting pathways and facile strain relaxation. The LiFe0.5Mn0.5PO4 nanoparticles were synthesized via a simple-facile microwave method followed by coating with multi-walled carbon nanotubes (MWCNTs) nanoparticles to enhance electrical and thermal conductivity. The pristine LiFe0.5Mn0.5PO4 and LiFe0.5Mn0.5PO4-MWCNTs composite were examined using a combination of spectroscopic and microscopic techniques along with electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Microscopic results revealed that the LiFe0.5Mn0.5PO4-MWCNTs composite contains well crystallized particles and regular morphological structures with narrow size distributions. The composite cathode exhibits better reversibility and kinetics than the pristine LiFe0.5Mn0.5PO4 due to the presence of the conductive additives in the LiFe0.5Mn0.5PO4-MWCNTs composite. For the composite cathode, D = 2.0 x 10-9 cm2/s while for pristine LiFe0.5Mn0.5PO4 D = 4.81 x 10-10 cm2/s. The charge capacity and the discharge capacity for LiFe0.5Mn0.5PO4-MWCNTs composite were 259.9 mAh/g and 177.6 mAh/g, respectively, at 0.01 V/s. The corresponding values for pristine LiFe0.5Mn0.5PO4 were 115 mAh/g and 44.75 mAh/g, respectively. This was corroborated by EIS measurements. LiFe0.5Mn0.5PO4-MWCNTs composite showed to have better conductivity which corresponded to faster electron transfer and therefore better electrochemical performance than pristine LiFe0.5Mn0.5PO4. The composite cathode material (LiFe0.5Mn0.5PO4-MWCNTs) with improved electronic conductivity holds great promise for enhancing electrochemical performances and the suppression of the reductive decomposition of the electrolyte solution on the LiFe0.5Mn0.5PO4 surface. This study proposes an easy to scale-up and cost-effective technique for producing novel high-performance nanostructured LiFe0.5Mn0.5PO4 nano-powder cathode material. / 2023-12-01

Page generated in 0.05 seconds