Spelling suggestions: "subject:" deriven channel flow"" "subject:" dcdriven channel flow""
1 |
Pressure Variation during Interfacial Instability in the Coextrusion of Low Density Polyethylene MeltsMartyn, Michael T., Coates, Philip D. January 2013 (has links)
No / Pressure variation during the coextrusion of two low density polyethylene melts was investigated. Melt streams were delivered to a die from two separate extruders to converge in a 30 degrees degrees geometry to form a two layer extrudate. Melt flow in the confluent region and die land to the die exit was observed through side windows of a visualisation cell. Stream velocity ratio was varied by control of extruder screw speeds. Layer thickness ratios producing wave type interfacial instability were quantified for each melt coextruded on itself and for the combined melts. Stream pressures and screw speeds were monitored and analysed. Wave type interfacial instability was present during the processing of the melts at specific, repeatable, stream layer ratios. Increased melt elasticity appeared to promote this type of instability. Analysis of process data indicates little correlation between perturbations in extruder screw speeds and stream pressures. The analysis did however show covariance between the individual stream pressure perturbations. Interestingly there was significant correlation even when interfacial instability was not present. We conclude that naturally occurring variation in extruder screw speeds do not perturb stream pressures and, more importantly, natural perturbations in stream pressures do not promote interfacial instability.
|
2 |
The influence of the cross section shape on channel flow : modeling, simulation and experiment / Influence de la forme de section transversale sur l'écoulement dans un canal : modélisation, simulation et expérimentationWu, Bo 23 January 2014 (has links)
La modélisation des phénomènes physiologiques induits par un écoulement, tels que l'écoulement sanguin au travers d'une sténose ou l'écoulement d'air lors de la production de parole, repose souvent sur des théories quasi-unidimensionnelles ou bi-dimensionnelles. Cependant, il est établi que le développement des couches limites dépend de la section transversale. Le but de cette thèse est de modéliser, simuler et caractériser l'importance potentielle de la section transversale sur les écoulements laminaires, contrôlés en pression, en l'absence ou en présence d'une constriction. Des coordonnées de translation sont utilisées pour obtenir des solutions pour des écoulement visqueux au travers d'une section de forme arbitraire. Cette paramétrisation est appliquée à la résolution des équations physiques pour des formes à deux et à trois dimensions. Un modèle d'écoulement simplifié quasi-tridimensionnel, qui prend en compte les pertes dissipatives par convection, la viscosité et la forme de la section est présenté et appliqué à la description de l'écoulement le long d'une sténose. Des données expérimentales et issues de simulations numériques sont collectées afin de caractériser l'influence de la forme de la section transversale dans le cas d'une constriction. simulation numérique sont comparées. / Physical models of physiological flow-induced phenomena, such as blood flow through a stenosis or air flow during human speech production, often rely on a quasi-one-dimensional or two-dimensional flow model, so that details of the cross section shape are neglected. Nevertheless, boundary layer development is known to depend on the cross section shape. The aim of this thesis is to model, simulate and characterize the potential impact of the cross section shape for pressure-driven laminar channel flow without and with constriction. Stretched coordinates are introduced to obtain viscous flow solutions for channels with an arbitrary cross section. The proposed cross section shape parametrization is applied to solve physical equations for two-dimensional and three-dimensional shapes. A simplified quasi-three-dimensional flow model, which accounts for kinetic losses, viscosity and the cross section shape, is presented and applied to describe the flow through a stenosis. Finally, flow data are gathered experimentally and numerically in order to characterize the influence of the cross section shape in the case of a constricted channel. Modeled, experimental and numerical data are compared.
|
Page generated in 0.072 seconds