Spelling suggestions: "subject:" ionic complexation"" "subject:" sonic complexation""
1 |
TEMPO-oxidized Nanocelluloses: Surface Modification and use as Additives in Cellulosic NanocompositesJohnson, Richard Kwesi 01 December 2010 (has links)
The process of TEMPO-mediated oxidation has gained broad usage towards the preparation of highly charged, carboxyl-functionalized polysaccharides. TEMPO-oxidized nanocelluloses (TONc) of high surface charge and measuring 3 to 5 nm in width have been recently prepared from TEMPO-oxidized pulp. This study examines as-produced and surface-hydrophobized TONc as reinforcing additives in cellulosic polymer matrices. In the first part of the work, covalent (amidation) and non-covalent (ionic complexation) coupling were compared as treatment techniques for the hydrophobization of TONc surfaces with octadecylamine (ODA). Subsequently, TONc and its covalently coupled derivative were evaluated as nanofiber reinforcements in a cellulose acetate butyrate (CAB) matrix. The properties of the resulting nanocomposites were compared with those of similarly prepared ones reinforced with conventional microfibrillated cellulose (MFC).
It was found that both ionic complexation and amidation resulted in complete conversion of carboxylate groups on TONc surfaces. As a result of surface modification, the net crystallinity of TONc was lowered by 15 to 25% but its thermal decomposition properties were not significantly altered. With respect to nanocomposite performance, the maximum TONc reinforcement of 5 vol % produced negligible changes to the optical transmittance behavior and a 22-fold increase in tensile storage modulus in the glass transition region of CAB. In contrast, hydrophobized TONc and MFC deteriorated the optical transmittance of CAB by ca 20% and increased its tensile storage modulus in the glass transition region by only 3.5 and 7 times respectively. These differences in nanocomposite properties were attributed to homogeneous dispersion of TONc compared to aggregation of both the hydrophobized derivative and the MFC reference in CAB matrix. A related study comparing TONc with MFC and cellulose nanocrystals (CNC) as reinforcements in hydroxypropylcellulose (HPC), showed TONc reinforcements as producing the most significant changes to HPC properties. The results of dynamic mechanical analysis and creep compliance measurements could be interpreted based on similar arguments as those made for the CAB-based nanocomposites.
Overall, this work revealed that the use of TONc (without the need for surface hydrophobization) as additives in cellulosic polymer matrices leads to superior reinforcing capacity and preservation of matrix transparency compared to the use of conventional nanocelluloses. / Ph. D.
|
2 |
Analytical method development for structural studies of pharmaceutical and related materials in solution and solid state : an investigation of the solid forms and mechanisms of formation of cocrystal systems using vibrational spectroscopic and X-ray diffraction techniquesElbagerma, Mohamed A. January 2010 (has links)
Analysis of the molecular speciation of organic compounds in solution is essential for the understanding of ionic complexation. The Raman spectroscopic technique was chosen for this purpose because it allows the identification of compounds in different states and it can give information about the molecular geometry from the analysis of the vibrational spectra. In this research the ionisation steps of relevant pharmaceutical material have been studied by means of potentiometry coupled with Raman spectroscopy; the protonation and deprotonation behaviour of the molecules were studied in different pH regions. The abundance of the different species in the Raman spectra of aqueous salicylic acid, paracetamol, citric acid and salicylaldoxime have been identified, characterised and confirmed by numerical treatment of the observed spectral data using a multiwavelength curve-fitting program. The non-destructive nature of the Raman spectroscopic technique and the success of the application of the multiwavelength curve-fitting program demonstrated in this work have offered a new dimension for the rapid identification and characterisation of pharmaceuticals in solution and have indicated the direction of further research. The work also covers the formation of novel cocrystal systems with pharmaceutically relevant materials. The existence of new cocrystals of salicylic acid-nicotinic acid, DLphenylalanine , 6-hydroxynicotinic acid, and 3,4-dihydroxybenzoic acid with oxalic acid have been identified from stoichiometric mixtures using combined techniques of Raman spectroscopy (dispersive and transmission TRS), X-ray powder diffraction and thermal analysis. Raman spectroscopy has been used to demonstrate a number of important aspects regarding the nature of the molecular interactions in the cocrystal. Cocrystals of salicylic acid - benzamide, citric acid-paracetamol and citric acid -benzamide have been identified with similar analytical approaches and structurally characterised in detail with single crystal X-ray diffraction. From these studies the high selectivity and direct micro sampling of Raman spectroscopy make it possible to identify spectral contributions from each chemical constituent by a peak wavenumber comparison of single-component spectra (API and guest individually) and the two- component sample material (API/guest), thus allowing a direct assessment of cocrystal formation to be made. Correlation of information from Raman spectra have been made to the X-ray diffraction and thermal analysis results. Transmission Raman Spectroscopy has been applied to the study cocrystals for the first time. Identification of new phases of analysis of the low wavenumber Raman bands is demonstrated to be a key advantage of the TRS technique.
|
3 |
Analytical method development for structural studies of pharmaceutical and related materials in solution and solid state. An investigation of the solid forms and mechanisms of formation of cocrystal systems using vibrational spectroscopic and X-ray diffraction techniquesElbagerma, Mohamed A. January 2010 (has links)
Analysis of the molecular speciation of organic compounds in solution is essential for the
understanding of ionic complexation. The Raman spectroscopic technique was chosen for
this purpose because it allows the identification of compounds in different states and it
can give information about the molecular geometry from the analysis of the vibrational
spectra. In this research the ionisation steps of relevant pharmaceutical material have been
studied by means of potentiometry coupled with Raman spectroscopy; the protonation
and deprotonation behaviour of the molecules were studied in different pH regions. The
abundance of the different species in the Raman spectra of aqueous salicylic acid,
paracetamol, citric acid and salicylaldoxime have been identified, characterised and
confirmed by numerical treatment of the observed spectral data using a multiwavelength
curve-fitting program. The non-destructive nature of the Raman spectroscopic technique
and the success of the application of the multiwavelength curve-fitting program
demonstrated in this work have offered a new dimension for the rapid identification and
characterisation of pharmaceuticals in solution and have indicated the direction of further
research.
The work also covers the formation of novel cocrystal systems with pharmaceutically
relevant materials. The existence of new cocrystals of salicylic acid-nicotinic acid, DLphenylalanine
, 6-hydroxynicotinic acid, and 3,4-dihydroxybenzoic acid with oxalic acid
have been identified from stoichiometric mixtures using combined techniques of Raman
spectroscopy (dispersive and transmission TRS), X-ray powder diffraction and thermal
analysis. Raman spectroscopy has been used to demonstrate a number of important
aspects regarding the nature of the molecular interactions in the cocrystal. Cocrystals of
II
salicylic acid ¿ benzamide, citric acid-paracetamol and citric acid -benzamide have been
identified with similar analytical approaches and structurally characterised in detail with
single crystal X-ray diffraction.
From these studies the high selectivity and direct micro sampling of Raman spectroscopy
make it possible to identify spectral contributions from each chemical constituent by a
peak wavenumber comparison of single-component spectra (API and guest individually)
and the two- component sample material (API/guest), thus allowing a direct assessment of
cocrystal formation to be made. Correlation of information from Raman spectra have
been made to the X-ray diffraction and thermal analysis results.
Transmission Raman Spectroscopy has been applied to the study cocrystals for the first
time. Identification of new phases of analysis of the low wavenumber Raman bands is
demonstrated to be a key advantage of the TRS technique. / Libyan government and Misurata University
|
4 |
Magnetic polyion complex micelles as therapy and diagnostic agents / Micelles polymères magnétiques comme agents pour la thérapie et l'imagerieNguyen, Vo Thu An 16 September 2015 (has links)
Ce manuscrit de thèse présente la synthèse de nanoparticules d’oxyde de fer superparamagnétiques couramment appelées SPIONs servant d’agents de contraste pour l’imagerie par résonance magnétique (IRM) et la génération de chaleur pour la thérapie cellulaire par hyperthermie induite par champ magnétique radiofréquence (HMRF). Le contrôle des tailles et de la distribution en tailles des SPIONs et donc de leurs propriétés magnétiques a été obtenu en utilisant un copolymère arborescent G1 (substrat de polystyrène branché en peigne noté G0, greffé avec des groupements pendants poly(2-vinyle pyridine) ) comme milieu « gabarit », tandis que la stabilité colloïdale et la biocompatibilité des SPIONs ont été apportées par un procédé de poly-complexation ionique grâce à un copolymère double-hydrophile acide polyacrylique-bloc-poly(acrylate de 2-hydroxyéthyle) PAA-b-PHEA. / This Ph.D. dissertation describes the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) designed to serve as magnetic resonance imaging (MRI) contrast agents and for heat generation in cellular radiofrequency magnetic field hyperthermia (MFH) treatment. Control over the size and size distribution of the iron oxide nanoparticles (NPs), and thus over their magnetic properties, was achieved using a G1 arborescent copolymer (comb-branched (G0) polystyrene substrate grafted with poly(2-vinylpyridine) side chains, or G0PS-g-P2VP) as a template. Good colloidal stability and biocompatibility of the SPIONs were achieved via the formation of polyion complex (PIC) micelles with a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) (PAA-b-PHEA) double-hydrophilic block copolymer.
|
Page generated in 0.0856 seconds