• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 96
  • 13
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 131
  • 60
  • 49
  • 38
  • 26
  • 25
  • 19
  • 19
  • 18
  • 17
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Sistema autônomo de comunicação sem fio em malha alimentado por energia solar fotovoltaica. / An autonomous wireless mesh communication system powered by solar energy.

Rafael Herrero Alonso 29 May 2009 (has links)
A tecnologia de comunicação em redes sem fio em malha, com base no padrão IEEE 802.11, tem sido uma solução tecnológica relevante no cenário atual das redes sem fio. Entretanto, com a eliminação dos cabos para comunicação de dados, as redes sem fio em malha dependem de fonte de energia para energizar os pontos de acesso da rede, que nem sempre está disponível na forma cabeada no local da instalação. Neste cenário, sendo o Brasil um país situado em uma zona tropical com alta incidência anual de radiação solar, a possibilidade da utilização da conversão da energia solar em elétrica é uma alternativa para eliminar a dependência de fonte de energia cabeada dos pontos de acesso da rede sem fio em malha. Este trabalho apresenta considerações sobre o desenvolvimento de sistemas autônomos de comunicação sem fio em malha, alimentados por energia solar fotovoltaica, compactos e de fácil instalação em área urbana e rural. Apresenta também, informações sobre o protótipo implementado denominado SAM Solar e respectiva avaliação quanto a autonomia, área de cobertura, número de usuários, altura mínima de instalação e taxa de transferência. / The wireless mesh network communication technology, based on the IEEE802.11 standard, has been a relevant technology solution for wireless networking in the recent years. However, even with the elimination of cables for data communication, the wireless mesh networks have to be connected to a voltage source using an electrical cable that may not be available at the local installation. In this scenario, being Brazil a country located in a tropical zone that receives large annual solar irradiation, the conversion of photons to electricity an be an alternative to eliminate the needs of wiring to the mesh access points. This work contributes to the development of autonomous wireless mesh communication systems powered by solar energy, with easy installation in urban or rural areas. This work also describes its evaluations in aspects such as autonomy, wireless coverage, number of users supported, installation height and throughput.
92

Vers des mécanismes de routage robustes et optimisés pour un réseau sans fil métropolitain et collaboratif. / Towards robust and optimized routing mechanisms in a wireless metropolitan and collaborative network

Houaidia, Chiraz 11 May 2016 (has links)
Les réseaux sans fil maillés offrent une infrastructure pour interconnecter les stations d’accès de réseaux de différentes technologies. Ils disposent d’une topologie maillée où tous les routeurs sont connectés de proche en proche sans hiérarchie centrale. Le routage des données, dans ce type de réseaux, doit être réalisé tout en optimisant les ressources du réseau et en respectant au mieux les exigences de QoS des utilisateurs. Dans cette thèse, nous proposons un routage orienté qualité de service dans un réseau sans fil métropolitain grâce à une approche de type cross-layer. Nous avons commencé par étudier l’impact des couches PHY et MAC sur le routage afin d’en déduire la meilleure combinaison protocolaire pour un réseau sans fil maillé. Nous avons, par la suite, orienté notre travail sur l’étude du comportement du protocole de routage OLSR sous différentes métriques de routage. Les résultats de cette étude ont confirmé les limites des métriques existantes à reproduire la qualité réelle des liens et ont soulevé plusieurs points d’optimisation sur lesquels nous avons focalisé. Nous avons donc proposé de nouvelles métriques qui renseignent sur la qualité des liens, en se basant sur les caractéristiques PHY et MAC des liens réseaux, notamment la disponibilité du lien, le taux de perte, la bande passante résiduelle, etc. L’acquisition de ces paramètres des couches basses se fait à l’aide d’un mécanisme de cross-layer. Ces métriques permettent d’appréhender les interférences inter-flux et d’éviter de créer des goulots d’étranglement en équilibrant les charges sur les différents liens. En se basant sur le modèle de graphe de conflit et le calcul des cliques maximales, nous avons proposé une méthode d’estimation de la bande passante résiduelle qui permet de considérer, en plus, les interférences intra-flux. Finalement, nous avons proposé un protocole de routage qui supporte cette métrique et nous avons étudié ses performances par simulation en comparaison avec d’autres métriques et protocoles de routage existants. Les résultats obtenus ont révélé l’aptitude de notre protocole à supporter le passage à l’échelle du réseau ainsi que sa capacité à choisir les routes offrant le plus de débit et le moins de délai, permettant ainsi, une meilleure livraison du trafic de données. / Wireless Mesh Networks provide infrastructure to interconnect access stations in networks of different technologies. They have a mesh topology where all the routers are connected with no central hierarchy. Routing in WMNs must be carried out while optimizing network resources and respecting the best user QoS requirements. In this thesis, we propose a QoS-oriented routing in a metropolitan wireless network using a cross-layer approach. We first studied the impact of the PHY and MAC layers on routing to deduce the best combination protocol for a wireless mesh network. We have subsequently focused our work on studying the behavior of the OLSR routing protocol with different routing metrics. The results of this study confirmed the limits of existing metrics to reproduce the real link quality and raised a number of optimization points on which we focused. We have, therefore, proposed new metrics that provide information about link quality, based on PHY and MAC characteristics, including the link availability, the loss rate, the available bandwidth, etc. These low layers parameters are acquired using a cross-layer mechanism. These metrics allow to apprehend inter-flow interferences and avoid bottleneck formation by balancing traffic load on the links. Based on the conflict graph model and calculation of maximal cliques, we proposed a method to estimate the available bandwidth of a path which considers, in addition, intra-flow interferences. Finally, we proposed a routing protocol that supports this metric and we studied by simulation its performances compared to different existing routing metrics and protocols. The results revealed the ability of our protocol to support the network scalability as well as its ability to choose routes with high throughput and limited delay, thus, better delivery of data traffic.
93

IEEE 802.16網狀網路使用令牌桶之允入控制 / Call Admission Control Using Token Bucket for IEEE 802.16 Mesh Networks

王川耘, Wang,Chuan-Yin Unknown Date (has links)
本論文對IEEE 802.16 協調分散式之網狀網路提出一允入控制之演算法。在此類網路中,控制子訊框交換各站台之排程訊息,並預留資料子訊框之時槽作為實際資料傳輸之用。我們利用令牌桶機制來控制網路訊流之流量特徵,如此可簡單的估計各訊流所需之頻寬。我們使用了所提出的頻寬估計方法,並一起考慮各訊流之跳接數與延遲時間之需求,提出的允入控制演算法能夠保證即時性串流之延遲時間需求,且可避免低等級訊流發生飢餓情形。模擬結果顯示,所提出的允入控制方法可以有效的把超過延遲時間需求之即時性訊流封包數目降低,並且低等級訊流在網路負載大時仍然可以存取頻道。 / We propose a routing metric (SWEB: Shortest-Widest Efficient Bandwidth) and an admission control (TAC: Token bucket-based Admission Control) algorithm under IEEE 802.16 coordinated, distributed mesh networks. In such network architectures, all scheduling messages are exchanged in the control subframes to reserve the timeslots in data subframes for the actual data transmissions. The token bucket mechanism is utilized to control the traffic pattern for easily estimating the bandwidth of a connection. We apply the bandwidth estimation and take the hop count and delay requirements into consideration. TAC is designed to guarantee the delay requirements of the real-time traffic flows, and avoid the starvation of the low priority ones. Simulation results show that TAC algorithm can effectively reduce the number of real-time packets that exceed the delay requirements and low priority flows still can access the channel when the network is heavily-loaded.
94

Enhancing P2P Systems over Wireless Mesh Networks

Cavalcanti de Castro, Marcel January 2011 (has links)
Due to its ability to deliver scalable and fault-tolerant solutions, applications based on the peer-to-peer (P2P) paradigm are used by millions of users on the internet. Recently, wireless mesh networks (WMNs) have attracted a lot of interest from both academia and industry, because of their potential to provide flexible and alternative broadband wireless internet connectivity. However, due to various reasons such as unstable wireless link characteristics and multi-hop forwarding operation, the performance of current P2P systems is rather low in WMNs. This dissertation studies the technological challenges involved while deploying P2P systems over WMNs. We study the benefits of location-awareness and resource replication to the P2P overlay while targeting efficient resource lookup in WMNs. We further propose a cross-layer information exchange between the P2P overlay and the WMN in order to reduce resource lookup delay by augmenting the overlay routing table with physical neighborhood and resource lookup history information. Aiming to achieve throughput maximization and fairness in P2P systems, we model the peer selection problem as a mathematical optimization problem by using a set of mixed integer linear equations. A study of the model reveals the relationship between peer selection, resource replication and channel assignment on the performance of P2P systems over WMNs. We extend the model by formulating the P2P download problem as chunk scheduling problem. As a novelty, we introduce constraints to model the capacity limitations of the network due to the given routing and channel assignment strategy. Based on the analysis of the model, we propose a new peer selection algorithm which incorporates network load information and multi-path routing capability. By conducting testbed experiments, we evaluate the achievable throughput in multi-channel multi-radio WMNs. We show that the adjacent channel interference (ACI) problem in multi-radio systems can be mitigated, making better use of the available spectrum. Important lessons learned are also outlined in order to design practical channel and channel bandwidth assignment algorithms in multi-channel multi-radio WMNs.
95

SDN-aware framework for the management of cooperative WLANs/WMNs

Sajjadi Torshizi, Seyed Dawood 07 January 2019 (has links)
Drastic growth and chaotic deployment of Wireless Local Area Networks (WLANs) in dense urban areas are some of the common issues of many Internet Service Providers (ISPs) and Wi-Fi users. These issues result in a substantial reduction of the throughput and impede the balanced distribution of bandwidth among the users. Most of these networks are using unmanaged consumer-grade Access Points (APs) and there is no cooperation among them. Moreover, the conventional association mechanism that selects APs with the strongest Received Signal Strength Indicator (RSSI) aggravates this situation. In spite of all these challenges, there is a great opportunity to build cooperative overlay networks among the APs that are owned by different ISPs, companies or individuals in dense urban areas. In fact, ISPs can distribute the resources among their customers in a cooperative fashion using a shared overlay platform which is constructed on top of the existing infrastructures. This approach helps the ISPs with efficient utilization of their resources and promoting the Quality of their Services (QoS). For instance, cooperative association control among the APs of different ISPs enables them to alleviate the drastic impact of interference in populated areas and improves the network throughput. Indeed, all Wi-Fi customers can associate to the APs from different ISPs and it leads to the construction of a large unified WLAN that expands the network coverage, significantly. Moreover, it results in a notable reduction of deployment costs and enhancement of customer satisfaction. Hence, as one of the key contributions of this dissertation, a cooperative framework for fine-grained AP association in dense WLANs is presented. On top of this framework, a thorough formulation and a heuristic solution to solve the aforementioned problems are introduced. The key enabler of the proposed solution is Software Defined Networking (SDN) which not only gives us an exceptional level of granularity but also empowers us to utilize high-performance computing resources and more sophisticated algorithms. Also, over the past few years, some of the largest cellular operators restricted their unlimited data plans and proposed tiered charging plans enforced by either strict throttling or large overage fees. While cellular operators are trying to guarantee the QoS of their services in a cost-effective and profitable manner, WLANs and Wi-Fi Mesh Networks (WMNs) as viable complements can be used to form a multihop backhaul connection between the access and the core networks. Indeed, the utilization of WMNs provides an opportunity to achieve a high network capacity and wide coverage by the employment of inexpensive commercial off-the-shelf products. Moreover, by bridging the WMNs and cellular networks, and the fine-grained traffic engineering of network flows, it is possible to provide a cost-effective Internet access solution for people who cannot afford the high cost of data plans. However, there are certain requirements in terms of QoS for different services over multi-hop backhaul networks. In addition, the process of service provisioning in WMNs incorporates tightly correlated steps, including AP association, gateway selection, and backhaul routing. In most of the prior studies, these steps were investigated as independent NP-hard problems and no unified formulation that considers all these steps (at different tiers of WMNs) has been presented. Hence, as another contribution of this dissertation, a structured and thorough scheme to address the demands of end-users over SDN-aware WMNs is introduced. In contrast to most of the former work, this scheme takes the key characteristics of wireless networks into account, especially for Multi-Channel Multi-Radio WMNs. The proposed solution can be applied to the large-scale scenarios and finds a near-optimal solution in polynomial time. Furthermore, since the presented solution may split the packets of a single flow among multiple paths for routing and there are non-trivial drawbacks for its implementation, a randomized single-path flow routing for SDN-aware WMNs is introduced. The randomized nature of the introduced solution avoids the complexities of implementing a multi-path flow routing and it presents a viable routing scheme that guarantees certain performance bounds. The functionality and performance of all the presented solutions have been assessed through extensive numerical results and real testbed experimentations as a proof of concept. It is important to note that the solutions presented in this dissertation can be utilized to provide a large variety of services for Wi-Fi users, while they guarantee different QoS metrics. / Graduate
96

Throughput Of Wireless Mesh Networks : An Experimental Study

Ramachandran, P 04 1900 (has links) (PDF)
Mesh network is gaining importance as the next generation network for many high speed applications such as multimedia streaming. This is because it is easy and inexpensive to setup mesh networks with mobile and PDA devices and can be used as a private network. Hence research is active in the field of routing protocols and routing metrics to improve the mesh network performance. Though most of the protocols are evaluated based on simulation, we implemented protocols based on a few metrics like Expected Transmission Count (ETX) Per-hop Packet Pair Delay (Pkt Pair) and WCETT (Weighted Cumulative Expected Transmitted Time) to investigate the performance of the network through experiments. An advanced version of DSR protocol called LQSR (Link Quality Source Routing) protocol of Microsoft Research along with MCL (Mesh Connectivity Layer) allows multiple heterogeneous adapters to be used in mesh network. Since wireless adapters of 802.11a standard offer 12 non-interfering channels and 802.11b/g standard offer 3 non-interfering channels, using multiple adapters of different bands operating on non-interfering channels to improve capacity and robustness of mesh networks was also investigated. In this thesis we explore the possibility of increasing the coverage area of Wireless Mesh Networks (WMN) to enhance the capacity of WMN and minimize the problems due to interference. Theoretical achievable capacity to every node in a random static wireless ad-hoc network with ideal routing is known to be where n is the total number of nodes in the network. Therefore, with increasing number of nodes in a network, throughput drops significantly. Our measurements show that throughput in a single WMN for different path length is closer to the throughput with nodes across two WMNs of the same path length. We propose to interconnect the networks by using multiple wireless adapters in a gateway node configured with the SSID of the networks in operation. We exploit the DSR protocol feature of assigning locally unique interface indices to its adapters. Performance of a network depends heavily on the metrics used for routing packets. Different metrics were studied in the thesis by setting up a 10-node testbed with a combination of nodes with single and two radios. Testbed was partitioned into two networks with two gateway nodes. Performance of multi-radio performance with the above metrics was compared with baseline single radio nodes in the network with the same metric. It is found that multi-radio nodes out-perform single radio nodes in the multi-hop scenario. Also, operating multi-mesh networks using multiple interfaces configured to those networks in a gateway node increases the coverage area and robustness without loss of performance.
97

Bluetooth Mesh Networks: Evaluation of Managed Flooding in Different Environments

Hanna, Ayham, Assaf, Alaa January 2023 (has links)
Bluetooth Mesh networks have gained popularity across various industries, showcasing their significant impact on network solutions. This technology is particularly notable for its low power consumption, making it a preferred choice for efficient and sustainable network development.  The objective of this study investigates the behavior of Bluetooth Mesh networks in various environments, aiming to improve network performance and provide guidance for optimal network design. This was achieved by performing experiments in multiple environments.  Data collection and regression analysis along with comparative visualization were employed to understand the relationship between these variables, including distance, number of packets sent, environment, latency, and packet loss ratio.   The results showed a significant relationship between distance and latency in the office and forest environments, as well as between distance and packet loss ratio in all environments. The number of packets sent has impact on latency and packet loss ratio.  The findings contribute to the development of more reliable and efficient communication systems for Internet of Things applications, as well as providing insights into the performance characteristics of the Bluetooth Mesh network in various scenarios.
98

Dynamic configuration of Bluetooth mesh : A master thesis in electrical engineering

Fricking, August January 2022 (has links)
When choosing what IoT protocol to use today, there are lots of choices. If a mesh type network is chosen, Bluetooth mesh might be a possible candidate. Bluetooth mesh without correctly configured parameters can however suffer from congestion and packet loss if the network is very dense or consists of many nodes. This can be counteracted by choosing which nodes should be relays more carefully, as well as setting the re-transmission count and Time To Live (TTL) based on the current topology of the network. If the nodes in the network change position or are added/removed regularly, it is impossible to set the parameters optimal for all the possible network layouts. This is where a dynamic configuration comes in handy. In this master thesis a custom control model was created which implemented the K2 Pruning algorithm for relay selection, custom heartbeats for a dynamic TTL on each node, and a static re-transmission count for message originators and relays. A possible way to implement a dynamic re-transmission count is also discussed, as well as how the dynamic configuration could be autonomous without the need of physical interaction when reconfiguring the network. The implemented dynamic configuration tested on a physical system of 33 nodes was partly unsuccessful, but still provided improved Packet Delivery Ratio (PDR), reduced message delay, and useful knowledge for future implementations of a dynamic configuration. The K2 Pruning algorithm failed in choosing relays correct and quickly due to congestion during the neighbor information exchange needed to run the algorithm. Therefore, a different relay selection algorithm is suggested for future models or the refrain of acknowledged messages during the neighbor information exchange phase.
99

An Analysis on Bluetooth Mesh Networks and its Limits to Practical Use

Cho, Minn, Granhäll, Philipe January 2021 (has links)
A mesh network is a technology that is being repopularized and becoming commonly used by the general public. As this increase in use is observed, technologies such as Bluetooth are being adapted to create mesh variants. In this thesis, a Bluetooth mesh network is created and tested using raspberry pi 4’s and the Bluetooth interface, btferret. This thesis attempts to approach the limits of this technology using accessible tools, outlining the performance the network possesses to serve as a guideline to determine if it suitable for use for tasks at hand. Experimentation is split into two overarching methods where a test for latency and throughput is conducted. The thesis goes on to expose these tests to different stressors, categorized as either internal or external. The data collected aims to show the impacts of internal properties, in this case size of the packets transmitted, the size of the network, and finally the number of hops a packet is able to make within the network. The external factors tested for consists of various environmental properties in the form of obstacles and interference. Walls and a microwaves were used as obstacles while WiFi and other Bluetooth signals were used for interference. The results show that Bluetooth Low Energy (BLE) mesh networks are clearly affected by several internal and external factors. From the experimentation conducted, the thesis illustrates the relative effects of each property the tests are exposed to. / Ett mesh nätverk är en teknik som blivit populär igen och används ofta av allmänheten. Eftersom denna ökade användning observeras, tekniker som Bluetooth anpassas för att skapa mesh nätverksvarianter. I denna avhandling skapas och testas ett Bluetoothnätverk med Raspberry pi 4’s och Bluetoothgränssnittet, btferret. Denna uppsats försöker nå gränserna för denna teknik med hjälp av tillgängliga verktyg, definiera nätverks prestandan som en riktlinje för att avgöra om det är lämpligt för användning för uppgifter till hands. Resultaten visar att BLE mesh nätverk har tydliga begränsningar som avslöjar sig i olika sammanhang. I denna raport så undersöks paket storlek och antal hopp som ett paket kan göra inom nätverket utan signifikant prestandafall. Dessutom har olika andra faktorer, såsom väggar och andra störande radiofrekvenser visat sig påverka nätverket. Från alla experiment som genomförts så illustreras relativa effekt av det olika faktorer.
100

Architecture Design and Performance Optimization of Wireless Mesh Networks

He, Bing 03 August 2010 (has links)
No description available.

Page generated in 0.0405 seconds