• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of coextrusion die channel height on interfacial instability of low density polyethylene melt flow

Martyn, Michael T., Coates, Philip D., Zatloukal, M. January 2014 (has links)
No / The effect of side stream channel height on flow stability in 30 degrees coextrusion geometries was investigated. The studies were conducted on a Dow LD150R low density polyethylene melt using a single extruder to feed a flow cell in which the delivered melt stream was split before, and rejoined after, a divider plate in a slit die. Wave type interfacial instability occurred at critical stream thickness ratios. Reducing the side stream channel height broadened the layer ratio operating range before the onset of interfacial instability, therefore improving process stability. Stress fields were quantified and used to validate principal stress differences of numerically modelled flow. Stress field features promoting interfacial instability in each of the die geometries were identified. Interfacial instability resulted when the stress gradient across the interface was asymmetric and accompanied by a non-monotonic decay in the stress along the interface from its inception.
2

Pressure Variation during Interfacial Instability in the Coextrusion of Low Density Polyethylene Melts

Martyn, Michael T., Coates, Philip D. January 2013 (has links)
No / Pressure variation during the coextrusion of two low density polyethylene melts was investigated. Melt streams were delivered to a die from two separate extruders to converge in a 30 degrees degrees geometry to form a two layer extrudate. Melt flow in the confluent region and die land to the die exit was observed through side windows of a visualisation cell. Stream velocity ratio was varied by control of extruder screw speeds. Layer thickness ratios producing wave type interfacial instability were quantified for each melt coextruded on itself and for the combined melts. Stream pressures and screw speeds were monitored and analysed. Wave type interfacial instability was present during the processing of the melts at specific, repeatable, stream layer ratios. Increased melt elasticity appeared to promote this type of instability. Analysis of process data indicates little correlation between perturbations in extruder screw speeds and stream pressures. The analysis did however show covariance between the individual stream pressure perturbations. Interestingly there was significant correlation even when interfacial instability was not present. We conclude that naturally occurring variation in extruder screw speeds do not perturb stream pressures and, more importantly, natural perturbations in stream pressures do not promote interfacial instability.

Page generated in 0.0968 seconds