• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 108
  • 38
  • 23
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 415
  • 120
  • 111
  • 105
  • 61
  • 61
  • 61
  • 53
  • 52
  • 51
  • 45
  • 45
  • 39
  • 38
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Shape and chemical anisotropic particles in low dielectric constant media

Butterworth, Sean January 2013 (has links)
Electrophoretic displays (EDPs) are an attractive low power technology for small to large area displays. Such display technology has seen a surge of research interest with the launch of successful e-readers in the market place, owing to their lower power consumption and paper-like quality. This work aims to look at the influence of shape on the electrophoretic mobility of particles for such devices. Crosslinked poly(methyl methacrylate) (PMMA) precursor particles with a narrow size distribution were produced by non aqueous dispersion polymerisation utilising a pump-feed method. To produce shape anisotropic particles an adapted version of the dynamic swelling method for polar media was chosen. Suitable monomers were screened by the use of Hansen solubility theory to find monomers which interact with PMMA but not the solvent. It was found that 2- hydroxyethyl methacrylate (HEMA) and N-hydroxyethyl acrylamide (HEAm) were two such suitable monomers, methyl methacrylate (MMA) was also used as a control series.It was found that cluster-like particle morphologies could be produced by the MMA system by the inclusion of small quantities of crosslinking monomer. This was due to precipitation of higher molecular weight polymer segments to the seed particle surface. The cluster-like morphology could be enhanced by use of a polar crosslinking monomer and by sequential reactions. For the polar system, it was found that the reactions with pure monomer were unclean, due to the solubility mismatch of the monomer and the solvent system. This was overcome by a copolymerisation with MMA. The system showed different particle morphologies could be produced by varying the polar monomer content. In one case a sample of pure dumbbell-like particles could be produced. These dumbbell-like particles are thought to be chemical as well as shape anisotropic owing to monomer composition. EPD evaluation for the particles was undertaken and showed that all particles can become highly charged in low dielectric constant media, but that the shape anisotropic particles are prone to adsorption to the cell walls and electrodes.The work outlined in this thesis shows the first reporting of shape anisotropic polymeric particles produced in low dielectric constant solvents system.
112

Polypeptoide - Synthese und Charakterisierung / Polypeptoids - Synthesis and characterization

Fetsch, Corinna January 2014 (has links) (PDF)
Die vorliegende Arbeit befasste sich mit der bisher relativ unbekannten Polymerklasse der Polypeptoide, die hinsichtlich ihrer Verwendung als Biomaterial näher untersucht werden sollte. Hierbei war die Untersuchung des Polymerisationssystems ein wesentlicher Schwerpunkt. Dies beinhaltete zum einen die Synthesen verschiedener Monomere sowie deren Polymerisationskinetiken und zum anderen Studien über die Stabilität des aktiven Kettenendes. Um mehr über die Polypeptoide zu erfahren, wurden die erhaltenen Homopolymere nach der Strukturanalyse hinsichtlich ihrer physikochemischen Eigen-schaften untersucht. Im Anschluss erfolgte die Synthese von (amphiphilen) Blockco-polypeptoiden, die sich in wässrigen Lösungen zu definierten Morphologien zusammen-lagern. Die resultierenden Morphologien, sowohl mizellare als auch vesikuläre Strukturen, wurden mit verschiedenen Methoden, wie z. B. der Pyren-Fluoreszenz-Spektroskpie und der dynamischen Lichtstreuung, untersucht. Erste Erkenntnisse über die Biokompatibilität der Polypeptoide sollte die Bestimmung der Zellviabilität in verschiedenen Polymerlösungen liefern. Die verschiedenen Studien über die Polypeptoide zeigten, dass diese Polymerklasse über eine besonders lebende Polymerisation synthetisiert werden kann. Dabei resultieren Produkte, die sich durch eine Poisson-Verteilung und eine hohe Endgruppengenauigkeit auszeichnen. Zusätzlich bestehen Polypeptoide aus einem abbaubaren Rückgrat und, im Vergleich zu den Polypeptiden, besitzen sie eine erhöhte proteolytische Stabilität. Amphiphile Blockcopolypeptoide sind zudem in der Lage, sich in Lösung zu verschiedenen Morphologien anzuordnen. Durch die Variierung der Seitenkette und des f kann sowohl die Selbstorganisation als auch das Mikroumfeld der Aggregate abgestimmt werden. Darüber hinaus können die amphiphile Blockcopolymere, die sich zu Mizellen anordnen, hydrophobe Substanzen solubilisieren. Polypeptoide liefern all die nötige chemische Vielseitigkeit und potentielle Biokompatibilität, um bestehende sowie neuartige Probleme in biomedizinischen Anwendungen zu bewältigen. Zukünftige in vivo und in vitro Test werden das Potential, aber auch die Grenzen dieser neuen Polymerklasse als Biomaterial zeigen. / The present work focused on the synthesis and characterization of the relatively unknown polymer class polypeptoids and their potential as a biomaterial. In detail, the syntheses of different monomers and their polymerization kinetics as well as studies on the stability of the active chain end were investigated. Furthermore, the physicochemical properties with respect to the polymer structure were analyzed by a series of homo- and block copolymers. The self-assembly of amphiphilic block copolypeptoids in aqueous solution resulted in micellar as well as vesicular structures, which were studied meticulously by various methods such as pyrene fluorescence spectroscopy and dynamic light scattering. First results about the biocompatibility of the polypeptoids was gained by cell viability assay. The various studies on the polypeptoids showed that this polymer class is accessible through an extraordinary living polymerization. The obtained products are characterized by a Poisson distribution and a high end-group fidelity. Additionally, polypeptoids consist of a degradable backbone and feature enhanced proteolytic stability in contrast to polypeptides. Moreover, amphiphilic block copolypeptoids are able to assemble in aqueous solution into different morphologies. By variation of the side chain and f the self-assembly as well as the microenvironment of the aggregates can be fine-tuned. In addition, amphiphilic block copolymers which formed micelles are able to solubilize hydrophobic compounds. In summary, the polypeptoids provide all the chemical versatility and potentially biocompatibility necessary to overcome existing as well as novel problems in biomedical applications. Future in vivo and in vitro tests will show the potential, but also limits of this new polymer class as a biomaterial.
113

Developed Hybrid Model for Propylene Polymerisation at Optimum Reaction Conditions

Khan, M.J.H., Hussain, M.A., Mujtaba, Iqbal M. 28 January 2016 (has links)
Yes / A statistical model combined with CFD (computational fluid dynamic) method was used to explain the detailed phenomena of the process parameters, and a series of experiments were carried out for propylene polymerisation by varying the feed gas composition, reaction initiation temperature, and system pressure, in a fluidised bed catalytic reactor. The propylene polymerisation rate per pass was considered the response to the analysis. Response surface methodology (RSM), with a full factorial central composite experimental design, was applied to develop the model. In this study, analysis of variance (ANOVA) indicated an acceptable value for the coefficient of determination and a suitable estimation of a second-order regression model. For better justification, results were also described through a three-dimensional (3D) response surface and a related two-dimensional (2D) contour plot. These 3D and 2D response analyses provided significant and easy to understand findings on the effect of all the considered process variables on expected findings. To diagnose the model adequacy, the mathematical relationship between the process variables and the extent of polymer conversion was established through the combination of CFD with statistical tools. All the tests showed that the model is an excellent fit with the experimental validation. The maximum extent of polymer conversion per pass was 5.98% at the set time period and with consistent catalyst and co-catalyst feed rates. The optimum conditions for maximum polymerisation was found at reaction temperature (RT) 75 °C, system pressure (SP) 25 bar, and 75% monomer concentration (MC). The hydrogen percentage was kept fixed at all times. The coefficient of correlation for reaction temperature, system pressure, and monomer concentration ratio, was found to be 0.932. Thus, the experimental results and model predicted values were a reliable fit at optimum process conditions. Detailed and adaptable CFD results were capable of giving a clear idea of the bed dynamics at optimum process conditions.
114

Hierarchy and Sustainability: Investigating the Use of Adhesives in a Petroleum-Dependent World Through the Lens of Natural Materials

Clayton R Westerman (18360096) 12 April 2024 (has links)
<p dir="ltr">Adhesives surround us on a daily basis without us even being aware. They are the unsung heroes of most commercial products we use. Whether it be the car you drive, the shoes you wear, or the furniture you sit on, glue is keeping everything together. Adhesives have been used since the cavemen utilizing tar for keeping stone tools together. Over time, adhesives have exploded in the scientific landscape through a multitude of chemical pathways. Current products are comprised of epoxies, cyanoacrylates, polyurethanes, and many others. The need for adhesives in the manufacturing of products is consistently increasing over the years in the goal of light weighting without compromising on performance of the final material. However, this comes at the cost of glues being both toxic and nonrecyclable. With this in mind an improvement was needed to address both augmenting the glue strength and improving the sustainability of the adhesive.</p><p dir="ltr">Hierarchical structures can be observed on the micro scale in natural materials. Tree limbs are able to withstand a tremendous amount of force applied from winds, human machinery, and animal life. Why they are so resistant lies in the fact there is an ordered structure of multiple length scales working in tandem upholding the integrity of the limb. The question to ask then relating this to adhesives is if there is a way to create a glue that can disperse the forces amongst the overall material without catastrophic failure. The use of fillers such as calcium carbonate and different adhesive strain rates can be used to mimic this interaction.</p><p dir="ltr">Addressing the sustainability factor of current glues, the need was set to create a more bio-based alternative using widely available materials that are cost effective and do not compromise on overall performance. Competing with or outperforming the current market adhesives was a goal in mind. Two generations of bio-based adhesives were generated through multiple formulations using epoxidized soybean oil as the common factor. Soybean oil is one of the most widely produced vegetable oils in the country. Utilizing the oil in a functionalized way through epoxide rings, the replacement of current epoxy technology was achieved.</p>
115

Construction of DNA–polymer hybrids using intercalation interactions

Wilks, T.R., Pitto-Barry, Anaïs, Kirby, N., Stulz, E., O'Reilly, R.K. 17 December 2013 (has links)
No / Reversible addition–fragmentation chain transfer (RAFT) polymerisation was used to produce a range of polymers terminated with an acridine group, which intercalates efficiently into dsDNA; the structure of the polymer determines the nature and strength of the interaction. Using a short 63 base pair dsDNA, discrete and well-defined DNA–polymer hybrid nanoparticles were formed, which were characterised by dynamic light scattering, small-angle X-ray scattering and atomic force microscopy. / University of Warwick, EPSRC, Swiss National Science Foundation
116

Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water

Kang, Y., Pitto-Barry, Anaïs, Rolph, M.S., Hua, Z., Hands-Portman, I., Kirby, N., O'Reilly, R.K. 04 June 2016 (has links)
Yes / Amphiphilic nucleobase-containing block copolymers with poly(oligo(ethylene glycol) methyl ether methacrylate) as the hydrophilic block and nucleobase-containing blocks as the hydrophobic segments were successfully synthesized using RAFT polymerization and then self-assembled via solvent switch in aqueous solutions. Effects of the common solvent on the resultant morphologies of the adenine (A) and thymine (T) homopolymers, and A/T copolymer blocks and blends were investigated. These studies highlighted that depending on the identity of the common solvent, DMF or DMSO, spherical micelles or bicontinuous micelles were obtained. We propose that this is due to the presence of A–T interactions playing a key role in the morphology and stability of the resultant nanoparticles, which resulted in a distinct system compared to individual adenine or thymine polymers. Finally, the effects of annealing on the self-assemblies were explored. It was found that annealing could lead to better-defined spherical micelles and induce a morphology transition from bicontinuous micelles to onion-like vesicles, which was considered to occur due to a structural rearrangement of complementary nucleobase interactions resulting from the annealing process. / European Research Council (ERC), University of Warwick, Engineering and Physical Sciences Research Council (EPSRC), National Science Foundation (U.S.) (NSF)
117

Micellar nanoparticles with tuneable morphologies through interactions between nucleobase-containing synthetic polymers in aqueous solution

Hua, Z., Pitto-Barry, Anaïs, Kang, Y., Kirby, N., Wilks, T.R., O'Reilly, R.K. 06 August 2016 (has links)
Yes / Herein, we report the preparation of nucleobase-containing synthetic amphiphilic diblock copolymers using RAFT polymerization. Well-defined spherical micelles can be formed in aqueous solutions through the self-assembly of the amphiphilic copolymers, with the nucleobase functionality sequestered in the core of the particles. Following assembly, copolymers with the complementary nucleobase were introduced into the preformed micellar solutions. This addition induced a change in nanostructure size and morphology and this reorganization was fully characterized by DLS, TEM, SLS and SAXS analysis. The insertion of copolymers with the complementary nucleobase into formed micelles was also confirmed by 1 H NMR and UV-vis spectroscopy. For micelles consisting of moderately short hydrophobic blocks, upon the addition of complementary nucleobase copolymer a decrease in size was observed but without any accompanying morphological change. For micelles formed from longer hydrophobic blocks, a morphological transition from spheres to cylinders and then to smaller spheres was observed upon increasing the amount of the complementary copolymer. This work highlights how complementary nucleobase interactions can be used to induce nanostructure reorganization and through a simple mixing process provide access to different nanostructure sizes and morphologies. / University of Warwick, China Scholarship Council (CSC), National Science Foundation (U.S.) (NSF), Engineering and Physical Sciences Research Council (EPSRC), European Research Council (ERC)
118

The hydrolytic behavior of N,N’-(dimethylamino) ethyl acrylate-functionalized polymeric stars

Rolph, M.S., Pitto-Barry, Anaïs, O'Reilly, R.K. 2017 March 1917 (has links)
Yes / Well-defined N,N’-(dimethylamino)ethyl acrylate (DMAEA) functionalized polymeric stars have been synthesized via an arm-first approach. Utilizing reversible addition–fragmentation chain transfer polymerization, linear homopolymers (PEGA, PHEA) were chain extended with DMAEA and a divinyl crosslinker to produce a series of crosslinked polymeric stars. These stars were characterized using a range of techniques including NMR, SEC, DLS and TEM analysis. The hydrolytic behavior of the DMAEA when tethered within a micellar core was investigated by1 H NMR spectroscopy and was found to be strongly dependent on temperature. At elevated temperatures either a higher crosslinking density or a longer arm length was found to offer greater protection to the amine resulting in slower hydrolysis, with hydrolysis found to level off at a lower final percentage hydrolysis. In contrast, the composition and nature of the arm was found to have little impact on the hydrolysis, with the same trends relating to the effect of temperature and crosslinking density observed with a linear (HEA) and a brush (PEGA) arm. Additionally, the release of DMAE from the polymeric stars was successfully confirmed through the use of an enzymatic assay, producing a concentration of DMAE in good agreement with the theoretical concentration based on the 1H NMR spectroscopic analysis. / Atomic Weapons Establishment (AWE), EPSRC
119

Alkaline earth and rare earth complexes for the ring opening polymerisation of cyclic esters

Clark, Lawrence January 2012 (has links)
This Thesis describes the use of alkaline earth and rare earth complexes bearing phenolate ligands as catalysts in the amine-initiated, immortal ring opening polymerisation (ROP) of cyclic esters. Mechanistic elucidation was performed and two propagation pathways are presented. Chapter One introduces cyclic esters and catalytic routes to polyesters by ROP. Common techniques for polymer characterisation are described and an overview of relevant phenolate-supported ROP catalysts is given. Reversible chain transfer in ROP is also discussed. Chapter Two describes the synthesis and characterisation of zwitterionic Group 3 complexes bearing bis(phenolate)-amino ligands and the development of the amine-initiated, immortal ROP methodology using this class of catalyst. Detailed studies into the ROP of rac-lactide using amines and a zwitterionic yttrium complex are presented and the mechanism of amine-initiated, immortal ROP was derived. Chapter Three documents further amine-initiated, immortal ROP studies using a zwitterionic yttrium complex as the catalyst. The preparation of multiarm polymers is described and further investigations using the cyclic esters, ε-caprolactone and rac-β-butyrolactone are presented. Chapter Four describes the use of Group 2 and lanthanide phenolate complexes in the amine-initiated ROP of rac-lactide. Bulk polymerisation studies revealed the generality of the amine-initiated, immortal ROP methodology and an alternative propagation pathway was derived from mechanistic studies. Chapter Five details the synthesis and characterisation of Group 3 amide complexes supported by phenolate-amino ligands. Each complex was screened for ROP capability and amine co-initiators were employed. Chapter Six contains experimental details and characterisation data for the new complexes and polymer products described in this Thesis. CD Appendix contains crystallography .cif files, supporting information for each Chapter and spreadsheets containing polymerisation data.
120

Kontrollierte Darstellung von Blockcopolymeren durch Atom transfer radical polymerization (ATRP) und Untersuchungen der Oberflächenmorphologie durch Rasterkraftmikroskopie

Reining, Birte. Unknown Date (has links) (PDF)
Techn. Hochsch., Diss., 2000--Aachen.

Page generated in 0.1109 seconds