• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1048
  • 413
  • 404
  • 156
  • 150
  • 48
  • 39
  • 39
  • 29
  • 26
  • 17
  • 14
  • 10
  • 10
  • 10
  • Tagged with
  • 2818
  • 450
  • 431
  • 366
  • 296
  • 222
  • 174
  • 172
  • 165
  • 150
  • 141
  • 140
  • 140
  • 138
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
591

Controls development for the pallet handling device

Ottersbach, John Joseph January 1999 (has links)
No description available.
592

An Analysis of Slope Erosion and Surface Changes on Off-Road Vehicle Trails in Southeastern Ohio

Albright, Amy N. 22 September 2010 (has links)
No description available.
593

Multispectral satellite image understanding

Unsalan, Cem January 2003 (has links)
No description available.
594

Impact of Highway Bridge Runoff on Adjacent Receiving Water Bodies

Christopher, James E. 01 July 1980 (has links) (PDF)
Two locations, Lake Ivanhoe and the Maitland interchange of Interstate 4, were selected to study the impact of bridge runoff on receiving water bodies. The Lake Ivanhoe location includes two similar bridges, one without scuppers and one with scuppers. The Maitland interchange site has several borr ponds which drain to Lake Lucien. Samples were collected from Lake Ivanhoe below the bridges and in the open lake away from the bridges. Also samples were collected from the east pond, west pond, and lake Lucien, at the Maitland interchange. Samples included water, sediments, plants and benthos to detect differences, if any, in heavy metal concentration due to sampling location. Heavy metals tested included: ZN, Cu, Cr, Cd, Pb, As, Fe, and Ni. Dissolved oxygen, temperature profiles and secchi desk transparency were measured in the field. Additional water quality parameters such as pH, turbidity, carbon and phosphorus were evaluated. Results indicated significant differences in specific heavy metal concentrations exist between samples collected beneath a bridge with scuppers compared to samples collected beneath a bridge without scuppers. Also, the drainage ponds appear to contain more heavy metals than the adjacent Lake Lucien at the Maitland interchange.
595

THE FEASIBILITY OF THE SUSTAINABLE RE-DEVELOPMENT OF UNIVERSITY PLAZA

Derkach, Nick 08 1900 (has links)
This paper investigates the feasibility of the construction of a sustainable mixed-use development from a 1950's commercial plaza. The specific commercial plaza under investigation was University Plaza in Dundas, Ontario. Incorporating sustainable building techniques, such as higher density housing, clean energy generating technologies, energy efficiency, and water conservation, a more sustainable design for the plaza was accomplished. To become more pedestrian friendly, pedestrian areas were incorporated into the design, as well as a rapid transit terminal. Using rough construction estimates, it was determined that redevelopment would cost $67.9 million± 20% with a simple payback period of 7.8 years. Using the time value of money, a discounted payback period between 9.6 and 16.0 years was determined. As a result, the re-development project was deemed economically feasible to a reasonable degree. / Thesis / Master of Engineering (MEngr)
596

Do Roads Effect the Abundance of Garter Snakes (Thamnophis sirtalis) and Redbelly Snakes (Storeria occipitomaculata)?

Gigeroff, Andrea 23 September 2022 (has links)
ABSTRACT The greatest driver of the current global biodiversity crisis is habitat loss. Roads are a major contributor to habitat loss because they destroy and fragment habitat, in addition to causing direct mortality. Animals may respond to roads either by avoiding them, thus leading to population isolation, or by attempting to cross them, thus potentially leading to increased mortality and, if so, also to population isolation. I studied the impact of road density on abundance of two northern snake species: the redbelly snake (Storeria occipitomaculata) and the garter snake (Thamnophis sirtalis). I hypothesized that roads are detrimental to snake populations due to road avoidance and road mortality. Therefore, I predicted that snakes should be less abundant in sites with higher road density in their surroundings. I deployed cover boards at 28 old field sites along a gradient of road density in 2020 and in 2021. I visited sites weekly and counted the number of individuals of both species. I captured fewer garter snakes at sites surrounded by more roads, and fewer redbelly snakes at sites enclosed by more roads. The effect of roads on number of snakes is modest, but could be indicative of decreasing population size, which could in turn lead to loss of ecological function. RÉSUMÉ Le plus grand moteur de la crise mondiale actuelle de la biodiversité est la perte d'habitat. Les routes contribuent grandement à la perte d'habitat parce qu'elles détruisent et fragmentent l'habitat, en plus de causer de la mortalité directe. Les animaux peuvent réagir aux routes soit en les évitant, entraînant ainsi l'isolement des populations, soit en tentant de les traverser, entraînant ainsi potentiellement une mortalité accrue et également l'isolement des populations. J'ai étudié l'impact de la densité des routes sur l'abondance de deux espèces de couleuvres nordiques : la couleuvre à ventre rouge (Storeria occipitomaculata) et la couleuvre rayée (Thamnophis sirtalis). J'ai émis l'hypothèse que les routes sont néfastes pour les populations de serpents en raison de l'évitement des routes et de la mortalité routière. Par conséquent, j'ai prédit que les couleuvres devraient être moins abondantes dans les sites avec une densité routière plus élevée dans leurs environs. J'ai déployé des plaques abris sur 28 sites de champs en friche le long d'un gradient de densité de routes en 2020 et en 2021. J'ai visité les sites chaque semaine et compté le nombre d'individus des deux espèces. J'ai capturé moins de couleuvres rayées et moins de couleuvres à ventre rouge aux sites entourés de plus de routes. L'effet des routes sur le nombre de couleuvres est modeste, mais pourrait indiquer une diminution de la taille de la population, ce qui pourrait à son tour entraîner une perte de fonction écologique.
597

The aesthetics of death, youth, and the road : the violent road film in popular culture

McDiarmid, Heather E. (Heather Elizabeth) January 1996 (has links)
No description available.
598

Preview based Semi-Active Suspension Control

Thamarai Kannan, Harish Kumar 30 May 2024 (has links)
While semi-active suspensions help improve the ride comfort and road holding capacity of the vehicle, they tend to be reactive in nature and thus leave a lot of room for improvement. Incorporating road preview data allows these suspensions to become more proactive rather than reactive and helps achieve a higher level of performance. A lot of preview-based control algorithms in literature tend to require high computational effort to arrive at the optimal parameters thus making it difficult to implement in real time. Other algorithms tend to be based upon lookup tables which classify the road input into different categories and hence lose their effectiveness when mixed types of road profiles are encountered that are difficult to classify. Thus a novel control algorithm is developed which is easy to implement online and more responsive to the varying road profiles that are encountered by the vehicle. A numerical methods-based semi-active suspension control algorithm and a Model Predictive Control(MPC)-based semi-active suspension control algorithm are developed that can leverage the data from the upcoming road profile to increase the ride comfort of the vehicle. The numerical methods-based algorithm is developed for the sole purpose of determining the maximum possible ride comfort that can be achieved using semi-active dampers capable of altering their damping characteristics every 0.01 seconds. The MPC-based algorithm is a more realistic algorithm that can be implemented in real-time and achieves on average 70% of the ride comfort that the numerical methods-based algorithm can with minimal computational effort. / Master of Science / Semi-active suspensions help cars ride more smoothly and handle better on the road. However, they often react to bumps and potholes only after hitting them, which means there's room for improvement. By using information about the road ahead, these suspensions can adjust before reaching rough spots, making the ride even better. To make this work, a new control system was developed. This system includes two parts. The first part uses detailed calculations to find the best possible comfort level, adjusting the suspension every 0.01 seconds. This method shows the highest comfort that can be achieved but is too complex for everyday use. The second part uses a simpler method called Model Predictive Control (MPC). This part is practical for real-time driving and achieves about 70% of the best possible comfort. It doesn't need as much computing power and can quickly adapt to different road conditions, making it ideal for normal driving. This new system improves driving comfort and safety by making suspensions smarter and more efficient.
599

Effectiveness of Automatic Emergency Braking for Protection of Pedestrians and Bicyclists in the U.S.

Haus, Samantha Helen 16 November 2021 (has links)
In the United States, there were 36,560 traffic-related fatalities in 2018, of which 20% were pedestrians, bicyclists, and other vulnerable road users (VRUs) [1]. Vulnerable road users are non-vehicle occupants who, because they are not enclosed in a vehicle, are at higher risk of injury in traffic crashes. While overall traffic fatalities in the US have been decreasing, pedestrian and bicyclist fatalities have been trending upward. Vehicle-based active safety features could avoid or mitigate crashes with VRUs, but are highly dependent on the ability to detect a VRU with enough time or distance. This work presents methods to examine the characteristics of vehicle-pedestrian and vehicle-bicycle crashes and near-crashes using a variety of data sources, assess the potential effectiveness of Automatic Emergency Braking (AEB) in avoiding and mitigating VRU crashes through modeling and simulation, and estimate the future benefits of AEB for VRU safety in the United States. Additionally, active safety features are most effective when behavior of VRUs can be anticipated, however, the behavior of pedestrians and bicyclists is notoriously unpredictable. Therefore, an approach to examine and categorize pedestrian behavior in response to near-crashes and crashes events is presented. Overall, findings suggest that AEB has great potential to avoid and mitigate collisions with pedestrians and bicyclists, but it cannot avoid all crashes even when an idealized AEB system is assumed. Most pedestrians and bicyclists were found to be visible for at least one second prior to the crash, but obstructions, the unpredictability of VRUs, and adverse weather/lighting conditions still pose challenges in avoiding and mitigating crashes with VRUs. / Doctor of Philosophy / In the United States, there were 36,560 traffic-related fatalities in 2018, of which 20% were pedestrians, bicyclists, and other vulnerable road users (VRUs) [1]. Vulnerable road users are non-vehicle occupants who, because they are not enclosed in a vehicle, are at higher risk of injury in traffic crashes. While overall traffic fatalities in the US have been decreasing, pedestrian and bicyclist fatalities are trending upward. Vehicle-based countermeasures, such as Automatic Emergency Braking (AEB), could avoid or mitigate crashes with VRUs, but are highly dependent on the ability to detect a VRU with enough time or distance. My work presents methods to examine the characteristics of vehicle-pedestrian and vehicle-bicycle crashes and near-crashes using a variety of data sources, assess the potential effectiveness of AEB in avoiding and mitigating VRU crashes through modeling and simulation, and estimate the future benefits of AEB for VRU safety in the United States. Additionally, crash avoidance technologies are most effective when behavior of VRUs can be anticipated, however, the behavior of pedestrians and bicyclists is notoriously unpredictable. Therefore, I examined and categorized pedestrian behavior in response to near-crashes and crashes events. Overall, we found that AEB has great potential to avoid and mitigate collisions with pedestrians and bicyclists, but it cannot avoid all crashes even when assuming an idealized AEB system. Most pedestrians and bicyclists were found to be visible for at least one second prior to the crash, but obstructions, the unpredictability of VRUs, and adverse weather/lighting conditions still pose challenges in avoiding and mitigating crashes with VRUs.
600

A Three Dimensional Discretized Tire Model For Soft Soil Applications

Pinto, Eduardo Jose 02 April 2012 (has links)
A significant number of studies address various aspects related to tire modeling; most are dedicated to the development of tire models for on-road conditions. Such models cover a wide range of resolutions and approaches, as required for specific applications. At one end of the spectrum are the very simple tire models, such as those employed in real-time vehicle dynamic simulations. At the other end of the spectrum are the very complex finite element models, such as those used in tire design. In between these extremes, various other models have been developed, at different levels of compromise between accuracy and computational efficiency. Existing tire models for off-road applications lag behind the on-road models. The main reason is the complexity added to the modeling due to the interaction with the soft soil. In such situations, one must account for the soil dynamics and its impact on the tire forces, in addition to those aspects considered for an on-road tire. The goal of this project is to develop an accurate and comprehensive, while also efficient, off-road tire model for soft soil applications. The types of applications we target are traction, handling, and vehicle durability, as needed to support current army mobility goals. Thus, the proposed approach is to develop a detailed semi-analytical tire model for soft soil that utilizes the tire construction details and parallels existing commercially available on-road tire models. The novelty of this project relies in developing a three-dimensional three-layer tire model employing discrete lumped masses and in improving the tire-soil interface model. This will be achieved by enhancing the resolution of the tire model at the contact patch and by accounting for effects and phenomena not considered in existing models. / Master of Science

Page generated in 0.2778 seconds