Spelling suggestions: "subject:" atrength"" "subject:" 1strength""
671 |
Frequency of in-season strength and power training for rugby leagueMasters, Haydn, res.cand@acu.edu.au January 2001 (has links)
The purpose of this study was to determine the contribution of different in-season strength and power training frequencies to strength and power performance over the course of a 22 week rugby league competition period. Twenty-eight male (n=28) participants, with both high and low strength pre-training status, were divided into three groups following a 15 week pre-season strength and power training programme. A four week periodised in-season strength and power training programme, with intensities ranging from 75-100%, was cycled for the 22 week competition season. Strength and power training was conducted one day.week(-1) by the first high pre-training status group (HTFL, n=11), and two day.week(-1) by the second high pre-training status group (HTF2, n=9). The low pre-training status group (LTF1, n=8) performed the same strength and power training frequency and programme as HTF1. Training intensity (% 1RM) and volume (sets x repetitions) of in-season strength and power training sessions were standardised for both groups during each training week. Strength, power, and speed data were collected pre-season, and four times during the in-season period. No differences were found between HTF1 and HTF2 in performance variables throughout the 22-week in-season period. Both HTF1 and HTF2 displayed similar significant detraining effects in strength, power, and speed, regardless of in-season training frequency (p<0.05). LTF1 showed no change from pre-season strength and power performance following 22 weeks of the competition period (p<0.05). It was concluded that in-season strength and power training frequency may have a limited role in determining the success of the in-season strength and power training programme in highly trained footballers. The results of the present study suggest a number of factors other than in-season strength and power training frequency may affect in-season strength and power performance and detraining in high strength pre-training status athletes. The effect the start of a competition period has on dynamic athletic performance needs further investigation.
|
672 |
MUSKULÄR STYRKA VID MULTIPLA REPETITIONER: : SKILLNADER VID STYRKETEST I BÄNKPRESS OCH LIGGANDE BÄNKRODD MED SKIVSTÄNGER AV OLIKA DIAMETEROMFÅNGWesterberg, Martin January 2010 (has links)
<p><strong>Introduction:</strong> A complex interaction between muscles, tendons, bones, joints and nerves are required for optimal function of the human hand. It is known that an individual’s grip strength is vital for performance of physical demanding tasks such as strength training with free weights. Strength training including a thicker grip around the bar may enhance the strength of the grip in the athlete without other special routines for grip strength development. The purpose of this investigation was to examine the difference in performance in multiple repetitions in two strength training exercises using two different sizes on the bar, to look for correlations between grip strength of the subjects hand and the amount of repetitions executed with two different size of the bar and finally the correlation of hand size and the amount of repetitions executed with two different size of the bar.</p><p><strong>Method:</strong> 15 strength training men (23,9 ± 4,1 years), underwent measurements of hand size, maximum grip strength, 1 repetition maximum (1RM), a 80 % of 1RM weight strength test with two different bar sizes.</p><p><strong>Results:</strong> The results from the present investigation indicates a 21,1 % reduction of 80 % of 1 RM weight performance in repetitions executed in the bench press with the thicker diameter of the bar and a 66,2 % reduction in repetitions executed with a 80 % of 1 RM weight in the lying bench row with the thicker diameter of the bar. The size of the hand or the maximum grip strength does not influences the performance in the 80 % of 1 RM strength test.</p><p><strong>Conclusion: </strong>With support of the results from this present investigation the size of the bar diameter significant influences the performance in maximum repetitions executed in a set in strength training with free weights, in a rowing exercise the repetitions executed reduced with 66,2 % and in the bench press the reduction of executed repetitions were 21,1 % with the thicker diameter of the bar. The size of the hand do not influences the performance of maximal executed repetitions with the thicker bar diameter. Maximal grip strength has no influence of the performance according to the findings of this investigation.</p>
|
673 |
Characterisation of green-glued wood adhesive bondsSterley, Magdalena January 2012 (has links)
The gluing of unseasoned wood, called green gluing, is a relatively new sawmill process, implying a radically changed order of material flow in the production of value-added wood-based products. It facilitates the enhancement of raw material recovery and value yield by integrating defect elimination and gluing already before kiln drying. The present study evaluates green glued adhesive bonds in flatwise glued beams and finger joints. The main part of this work deals with green gluing using a moisture curing polyurethane adhesive (PUR). Standardised test methods and specially designed, small scale, specimens were used for the determination of the strength, fracture energy and the ductility of both dry- and green glued bonds in tension and in shear. Using the small scale specimens it was possible to capture the complete stress versus deformation curves, including also their unloading part. An optical system for deformation measurement was used for the analysis of bond behaviour. The influence of moisture content during curing and temperature after curing on the adhesive chemical composition and on the mechanical properties was investigated. Furthermore, the moisture transport through the adhesive bond during curing was tested. Finally, microscopy studies were performed for analysis of bond morphology and fracture. The results show that two significant factors influence the shear strength of green glued bonds: wood density and adhesive spread rate. Bonds which fulfil the requirements according to EN 386 could be obtained within a wide range of process parameters. The small specimen tests showed that green glued PUR bonds can reach the same strength and fracture energy, both in shear and in tension, as dry glued bonds with the same adhesive amount. The local material properties of the bonds could be determined, thanks to the failure in the tests taking place within the adhesive bond itself and not in the wood. Following process factors were shown to cause lower bond strength: a) a low adhesive spread rate, b) high pressure and c) short pressing time in combination with low wood density and high moisture content. Moreover, the heat treatment of the cured PUR adhesive during drying influenced the chemical composition of the adhesive, providing for higher strength, stiffness and Tg of the adhesive, caused by an increased amount of highly ordered bidentate urea.
|
674 |
Improving WiFi positioning through the use of successive in-sequence signal strength samplesHallström, Per, Dellrup, Per January 2006 (has links)
As portable computers and wireless networks are becoming ubiquitous, it is natural to consider the user’s position as yet another aspect to take into account when providing services that are tailored to meet the needs of the consumers. Location aware systems could guide persons through buildings, to a particular bookshelf in a library or assist in a vast variety of other applications that can benefit from knowing the user’s position. In indoor positioning systems, the most commonly used method for determining the location is to collect samples of the strength of the received signal from each base station that is audible at the client’s position and then pass the signal strength data on to a positioning server that has been previously fed with example signal strength data from a set of reference points where the position is known. From this set of reference points, the positioning server can interpolate the client’s current location by comparing the signal strength data it has collected with the signal strength data associated with every reference point. Our work proposes the use of multiple successive received signal strength samples in order to capture periodic signal strength variations that are the result of effects such as multi-path propagation, reflections and other types of radio interference. We believe that, by capturing these variations, it is possible to more easily identify a particular point; this is due to the fact that the signal strength fluctuations should be rather constant at every position, since they are the result of for example reflections on the fixed surfaces of the building’s interior. For the purpose of investigating our assumptions, we conducted measurements at a site at Växjö university, where we collected signal strength samples at known points. With the data collected, we performed two different experiments: one with a neural network and one where the k-nearest-neighbor method was used for position approximation. For each of the methods, we performed the same set of tests with single signal strength samples and with multiple successive signal strength samples, to evaluate their respective performances. We concluded that the k-nearest-neighbor method does not seem to benefit from multiple successive signal strength samples, at least not in our setup, compared to when using single signal strength samples. However, the neural network performed about 17% better when multiple successive signal strength samples were used.
|
675 |
A study of improved strength in paper made from low-substituted carboxymethylcellulose pulps.Talwar, Krishan Kumar 01 January 1957 (has links)
No description available.
|
676 |
The effect on pulp quality of the stepwise removal and replacement of the hemicelluloses from aspen holocelluloseMarch, Robert Eugene 01 January 1946 (has links)
No description available.
|
677 |
Dynamic Strength of Porcine ArteriesFan, Jinwu 15 November 2007 (has links)
The failure behavior of collagenous soft tissues is important for clinical problems of plaque rupture and trauma. Cyclic tests require high frequencies that may affect the strength properties of the soft tissues. Experimental results of mechanical response of blood vessels to physiologic loads can be used to model and predict plaque rupture and direct medical therapy or surgical intervention. The goal of the study is to measure the mechanical failure properties of arteries to determine if they are strain rate and cycle dependant and to measure the progressive damage of arteries with time dependent loading.
Ring specimens of porcine carotid arteries were preconditioned and then pulled to failure. In all cases, the intima broke first. Ultimate stress increased as a weak function of increasing strain rates. The ultimate stress at 100 mm/s was 4.54 MPa, greater than the 3.26 MPa at 0.1 mm/s. Strain rates between 1 and 100 mm/s correspond to a cyclic frequency of 0.5 Hz to 5 Hz for fatigue testing. In contrast, ultimate strain in arteries was independent of strain rate over the range tested. The creep tests showed a logarithmic relationship between stress magnitude and stress duration for this soft tissue. The creep testing indicates that damage is accumulating above certain threshold stress levels. The values of ultimate strength showed a 35% increase after 10,000 cycling loading. In contrast, the ultimate strain had a 13% decrease after cycling and the difference was statistically significant with p=0.018. The testing results showed that there were no significant differences on strength among fresh arteries and arteries stored at 5¡ã C for up to two weeks.
The test results may be useful for developing a mathematical model to predict the behavior of arterial soft tissues and may be extended to estimate fracture and fatigue in the atherosclerotic plaque cap.
|
678 |
Reconstruction, characterization, modeling and visualization of inherent and induced digital sand microstructuresLu, Ye 15 November 2010 (has links)
Strain localization, the phenomenon of large shear deformation within thin zones of intensive shearing, commonly occurs both in-situ and in the laboratory tests on soils specimens. The intriguing mechanism of strain localization and how it will affect the general behavior of soil specimens have been investigated by many researchers. Some of the efforts have focused on finding the links between material properties (void space, fabric tensor) and mechanical behavior (stress, strain, volumetric strain). In the last ten years, several extensive studies have been conducted at Georgia Tech to investigate the mechanism of strain localization and link the microstructural properties with the engineering behavior of Ottawa sands. These studies have included 2-D and 3-D characterization of soil microstructures under either triaxial or biaxial shearing conditions. To extend and complement these previous studies, the current study focuses particularly on 3-D reconstruction, analysis and modeling of specimens of Ottawa sand subject to triaxial or biaxial loading. The 3-D microstructure of biaxial specimens was reconstructed using an optical microscopy based montage and serial sectioning technique. Based on the reconstructed 3-D digital volumes, a series of 2-D and 3-D characterizations and analyses, including local void ratio distributions, extent of shear bands, influence of soil fabrics and packing signature effects, were conducted. In addition to the image analysis based reconstruction and characterization, the 3-D discrete element method (DEM) code, PFC3D, was used to explore both biaxial and triaxial shear related soil behaviors at the global and particulate scale. Void ratio distributions, coordination numbers, particle rotations and displacements, contact normal distributions and normal contact forces as well as global stress and strain responses were investigated and analyzed to help understand the mechanism of strain localization. The microstructures of the numerical specimens were also characterized in the same way as the physical specimens and similar strain localization patterns were identified. Combined with the previous related studies, the current study provides new insights into the strain localization phenomenon of Ottawa sands subject to triaxial and biaxial loading. In addition, the reconstructed digital specimens were subject to a series of dissection studies which revealed exciting new insights into "microstructure signatures" which exist at both meso and micro scales within the real and simulated specimens.
|
679 |
Improving WiFi positioning through the use of successive in-sequence signal strength samplesHallström, Per, Dellrup, Per January 2006 (has links)
<p>As portable computers and wireless networks are becoming ubiquitous, it is natural to consider the user’s position as yet another aspect to take into account when providing services that are tailored to meet the needs of the consumers. Location aware systems could guide persons through buildings, to a particular bookshelf in a library or assist in a vast variety of other applications that can benefit from knowing the user’s position.</p><p>In indoor positioning systems, the most commonly used method for determining the location is to collect samples of the strength of the received signal from each base station that is audible at the client’s position and then pass the signal strength data on to a positioning server that has been previously fed with example signal strength data from a set of reference points where the position is known. From this set of reference points, the positioning server can interpolate the client’s current location by comparing the signal strength data it has collected with the signal strength data associated with every reference point.</p><p>Our work proposes the use of multiple successive received signal strength samples in order to capture periodic signal strength variations that are the result of effects such as multi-path propagation, reflections and other types of radio interference. We believe that, by capturing these variations, it is possible to more easily identify a particular point; this is due to the fact that the signal strength fluctuations should be rather constant at every position, since they are the result of for example reflections on the fixed surfaces of the building’s interior.</p><p>For the purpose of investigating our assumptions, we conducted measurements at a site at Växjö university, where we collected signal strength samples at known points. With the data collected, we performed two different experiments: one with a neural network and one where the k-nearest-neighbor method was used for position approximation. For each of the methods, we performed the same set of tests with single signal strength samples and with multiple successive signal strength samples, to evaluate their respective performances.</p><p>We concluded that the k-nearest-neighbor method does not seem to benefit from multiple successive signal strength samples, at least not in our setup, compared to when using single signal strength samples. However, the neural network performed about 17% better when multiple successive signal strength samples were used.</p>
|
680 |
Restrained shrinkage behavior of high-performance concrete containing slagMontemarano, John, January 2009 (has links)
Thesis (M.S.)--Rutgers University, 2009. / "Graduate Program in Civil and Environmental Engineering." Includes bibliographical references (p. 151-153).
|
Page generated in 0.0736 seconds