• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 704
  • 368
  • 265
  • 70
  • 62
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 18
  • 10
  • 10
  • 8
  • Tagged with
  • 1813
  • 378
  • 341
  • 166
  • 157
  • 150
  • 143
  • 112
  • 106
  • 101
  • 99
  • 86
  • 83
  • 82
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

SIMULATION OF HYDRATE AGGREGATE STRUCTURE VIA THE DISCRETE ELEMENT METHOD

Rensing, Patrick J., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
As the oil industry moves from a heuristic of avoidance of hydrates to a heuristic of risk management time dependent phenomena of hydrate formation and plugging must be known. One of the key parameters to this process is the aggregation of hydrate particles, the fractal networks they form, and the effect these two parameters have on flow. Unfortunately the aggregation and fractal structure information is extremely difficult to acquire experimentally, for this reason a three-dimension discrete element method (3D-DEM) model has been implemented. The 3D-DEM model calculates detailed solutions to Newton's equations of motion for individual particles. In addition these particles are coupled with the surrounding fluid through computational fluid dynamics (CFD). This coupled 3D-DEM can be used to investigate what the effects of shear, suspending viscosity, attractive forces, and other relevant variables have on the structure, stresses, and positions of the hydrate particles over time. In addition, the effect on viscosity has been calculated using CFD and compared back to basic hard sphere theory.
442

Characterization of the Self-Assembly of Pyrene-Labelled Macromolecules in Water

Siu, Howard Chun-Kui January 2010 (has links)
The self-assembly of several pyrene-labelled amphiphilic macromolecules in water was characterized by fluorescence. Information on their self-assembly was obtained by monitoring the level of pyrene aggregation in solution. A measure of the level of association was obtained by determining the fraction of aggregated pyrene of the labelled macromolecules from the global analysis of their monomer and excimer fluorescence decays. Global analysis limits the degrees of freedom of the analysis thus reducing the error on the parameters retrieved from the analysis. Extensive developments in the global analysis of the pyrene monomer and excimer decays enabled the first characterization of the molar absorbance coefficient of the pyrene aggregates formed by aqueous solutions of pyrene-labelled poly(N,N-dimethylacrylamide) (PyPDMA) and poly(ethylene oxide) (PyPEO). The molar absorbance coefficients of the pyrene aggregates determined for PyPDMA and PyPEO were both found to be broader and red-shifted compared to that of unaggregated pyrene. These results agree with observations found in the scientific literature made by using absorption and excitation fluorescence measurements. Attempts to determine the molar absorbance coefficient of pyrene-labelled hydrophobically-modified alkali-swellable emulsion (PyHASE) polymers were unsuccessful. The inability to characterize the pyrene aggregates of PyHASE was attributed to the greater complexity of the PyHASE polymer compared to PyPDMA and PyPEO. For these simpler pyrene-labelled polymers, a protocol has been established which uses the global analysis of the pyrene monomer and excimer decays to determine quantitatively the level of association of pyrene-labelled polymers as well as the molar absorbance coefficient of their aggregates. Changes in the level of aggregation of pyrene-labelled lipids (PLLs) having head groups bearing an alcohol (PSOH) or imido diacetic acid (PSIDA) embedded in 1-palmitoyl-2-oleyl-3-sn-phosphatidylcholines (POPC) or distearylphosphatidylcholine (DSPC) liposomes were probed by fluorescence. Distribution of the PLLs in the fluid POPC membrane was found to be homogeneous while the PLLs phase-separated into amorphous channels created in the DSPC membranes. Multivalent cations Cu2+ and La3+ were found to bind to PSIDA, hindering diffusional encounters between unaggregated PSIDA but leaving the PLL aggregates intact. Using the fluorescence quenching ability of Cu2+, the viscosity of the amorphous channels of the DSPC membrane was determined to be about six times greater than that of the more fluid POPC membrane. Simultaneous rheological and fluorescence measurements were achieved by interfacing a rheometer with time-resolved and steady-state fluorometers using fiber-optic cables. This joint set up enabled the simultaneous rheological and fluorescence measurements of PyHASE solutions having concentrations ranging from 0.5 w/w% to 5 w/w%. The level of association of the PyHASE solutions was tracked using fluorescence at shear rates of 0, 0.1 and 100 s–1. Despite the presence of shear thinning leading to viscosity drops of up to four orders of magnitude, no change in the fluorescence and hence the level of association was observed. The lack of change in level of association implied that the mechanism of shear thinning is due to a switching from inter- to intramolecular association rather than a drop in the level of association. This information will prove useful for future models attempting to predict the rheological behaviour of sheared associative polymers.
443

Evaluation of Novel Strategies for the Inclusion of Sodium Chloride in Liquid Foods

Rietberg, Matthew Rodney 22 December 2011 (has links)
This thesis investigated the perception of salt taste in two novel strategies for inclusion of NaCl in liquid foods: water-in-oil (w/o) emulsions and mucoadhesive biopolymer solutions. The major factors influencing w/o emulsion stability and perception were evaluated and a response surface model was developed. The amount of dispersed aqueous phase was the most significant factor affecting stability and perception. NaCl stabilized the emulsions and depressed salt sensory perception at elevated concentrations due to its interaction with the emulsifier polyglycerol polyricinoleate. Future research should elaborate events during oral processing of w/o emulsions. Biopolymer mucoadhesive character and concentration effects were also investigated. Mucoadhesion did not enhance salt taste. Above c*, there was a significant depression of sensory intensity, enhanced in polymers with hyperentanglements in solution. The depressive concentration effect may mask the effects of mucoadhesion. Future research should also inspect the influence of thickened hydrocolloid microstructure on perception. / The Advanced Foods and Materials Network
444

Stimulation of Carbonate Reservoirs Using a New Emulsified Acid System

Sayed, Mohammed Ali Ibrahim 16 December 2013 (has links)
The scope of work can be divided into; the measurement of the rheological properties of a new emulsified acid system that can be suitable for high temperature applications, a study of the performance of the new emulsified acid in stimulating both calcite and dolomite formations, measuring the reaction rate and diffusion coefficient when the new emulsified acid systems react with both calcite and dolomite, and testing the new emulsified acid using core samples obtained from carbonate reservoirs. The droplet size has a practical impact on the performance of emulsified acid. A good understanding and characterization of the emulsified acid by its size distribution will lead to better understanding of its stability, rheology and how it reacts with carbonate rocks. The influence of the concentration of the new emulsifier on the droplet size, droplet size distribution and upon the rheology of emulsified acids is studied in detail. The emulsified acid reaction kinetics with calcite rocks was studied before in few studies, and very little work was done with dolomite. One of the main objectives of the present work is to study in detail the reaction of the emulsified acid with both calcite and dolomite rocks using the rotating disk apparatus. Most of the previous studies on the emulsified acid were done using core samples that were saturated with brine or deionized water. One of the main objectives of the present work is to study in detail the effect of the presence of crude oil in the reservoir rock on the performance of emulsified acids. Lastly, an innovative technique of emulsifying the chelating agents is evaluated for high temperature applications. The rheology of the emulsified chelating agent is measured using an HPHT rheometer. Also, the reaction of the new emulsified chelating agent with calcite is studied using the rotating disk apparatus, and coreflood experiments were performed using chelating agents and calcite core samples.
445

Mechanical Properties of Hexadecane-Water Interfaces with Adsorbed Hydrophobic Bacteria

Kang, Zhewen Unknown Date
No description available.
446

MODELLING THE RHEOLOGY OF COMPLEX FLUIDS : Cases of Bitumen and Heavy Oils at low temperatures.

Dion, Moïse Unknown Date
No description available.
447

Heat transfer in composite prepreg tapes

Wang, Xuhui January 1987 (has links)
No description available.
448

Non-vibrating Kelvin probe detection of nanometer scale lubricant films on a magnetic disk surface

Korach, Chad S. 08 1900 (has links)
No description available.
449

FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES IN EPOXY COMPOSITES

Fitzwater, Chris 01 January 2010 (has links)
Multi-walled carbon nanotubes (MWNTs) are a relatively new allotrope of carbon that have potentially useful properties that may improve polymer composites. The work of this thesis explores the interactions between MWNTs and functionalized MWNTs within epoxy matrix and the properties of the MWNT/epoxy composite. These interactions were characterized with an emphasis on finding how well the MWNT/epoxy composite flows and how conductive it is after curing.
450

MANUFACTURE, CHARACTERIZATION, AND APPLICATION OF MULTIWALL CARBON NANOTUBE COMPOSITE CRYLONITRILE-BUTADIENE-STYRENE

Bortz, Daniel Ray 01 January 2009 (has links)
Carbon nanotubes have been studied for nearly two decades and their amazing properties continue to spur intense investigation in the area of polymer composites. In terms of potential commercialization, mutiwall carbon nanotubes (MWCNTs) are currently the most prevalent and economically viable form of nanotubes. Uncovering innovative means to take full advantage of their properties remains a fundamental issue. In this thesis, viability of their use to reinforce polymeric systems is reported. Acrylonitrilebutadiene- styrene (ABS) was used as the host matrix. MWCNTs were introduced to the ABS matrix via melt compounding. The resulting composite was thoroughly rheologically, thermally, and mechanically characterized. Several applications were also experimentally studied. The composites fatigue performance is measured and compared to a typical micron sized carbon fiber. These results indicate that both the nano and micron scale carbon fibers reduce the resistance to fatigue failure. The mechanism of failure in both cases appears to be different and is discussed. The use of microwave energy is investigated for the use of heating purposes. Results show a distinct advantage over conventional heating methods. Microwaves allow for volumetric, fast, selective, and controllable heating of the ABS system.

Page generated in 0.3651 seconds